登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
已知θ为向量与的夹角,||=2,||=1,关于x的一元二次方程x2-||x+•=...
已知θ为向量
与
的夹角,|
|=2,|
|=1,关于x的一元二次方程x
2
-|
|x+
•
=0有实根.
(Ⅰ)求θ的取值范围;
(Ⅱ)在(Ⅰ)的条件下,求函数
的最值.
(I)由方程x2-|a|x+a•b=0有实根,可得△=||2-4=4(1-2cosθ)≥0,得,结合θ∈[0,π]可求 (II)利用二倍角公式、辅助角公式对已知函数化简可得=sin(2),结合θ的范围及正弦函数的性质可求函数的最值 【解析】 (I)由题意可得θ∈[0,π],由||=2,||=1,可得||2=4,=||||cosθ.…(3分) ∵方程x2-|a|x+a•b=0有实根,则有△=||2-4=4(1-2cosθ)≥0,得,所以.…(6分) (II)∵ = =…(9分) 又因为,所以, 所以sin( 所以,函数的最大值为,最小值为-1.…(12分)
复制答案
考点分析:
相关试题推荐
(考生注意:只能从下列A、B、C三题中选做一题,如果多做,则按第一题评阅记分)
A.(坐标系与参数方程选做题)曲线
(α为参数)与曲线ρ
2
-2ρcosθ=0的交点个数为
.
B.(不等式选讲选做题)设函数
,若函数f(x)的定义域为R,则实数a的取值范围是
.
C.(几何证明选讲选做题)如图,从圆O外一点A引圆的切线AD和割线ABC,已知AC=6,圆O的半径为3,圆心O到AC的距离为
,则AD=
.
查看答案
用max{a,b}表示a,b中两个数中的最大数,设f(x)=max
,
,那么由函数y=f(x)的图象、x轴、直线
和直线x=2所围成的封闭图形的面积是
.
查看答案
如果不等式组
表示的平面区域是一个直角三角形,则该三角形的面积为
.
查看答案
已知
,则a
1
+a
2
+a
3
+…+a
2012
=
.
查看答案
已知双曲线
(a>0,b>0)一个焦点坐标为(m,0)(m>0),且点P(m,2m)在双曲线上,则双曲线的离心率为
.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.