如图,四棱锥P-ABCD的底面ABCD为菱形,PA⊥平面ABCD,PA=PB=2,E、F分别为CD、PB的中点,AE=
.
(Ⅰ)求证:平面AEF⊥平面PAB.
(Ⅱ)求平面PAB与平面PCD所成的锐二面角的余弦值.
考点分析:
相关试题推荐
为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15)…第五组[17,18],如图是按上述分组方法得到的频率分布直方图.
性别 是否 达标 | 男 | 女 | 合计 |
达标 | a=24 | b=______ | ______ |
不达标 | c=______ | d=12 | ______ |
合计 | ______ | ______ | n=50 |
(Ⅰ) 设m,n表示样本中两个学生的百米测试成绩,已知mn∈[13,14)∪[17,18]求事件“|m-n|>2”的概率;
(Ⅱ) 根据有关规定,成绩小于16秒为达标.
如果男女生使用相同的达标标准,则男女生达标情况如附表:
根据上表数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
附:K
2=
.
P(K2≥K) | 0.050 | 0.010 | 0.001 |
K | 3.841 | 6.625 | 10.828 |
查看答案
已知函数
(x∈R ).
(Ⅰ)求函数f(x)的最小正周期及单调递增区间;
(Ⅱ)△ABC内角A、B、C的对边长分别为a、b、c,若
,
,且a>b,试判断△ABC的形状,并说明理由.
查看答案
已知双曲线
-
=1(a>0,b>0)与抛物线y
2=8x有 一个公共的焦点F,且两曲线的一个交点为P,若|PF|=5,则双曲线方程为
.
查看答案
设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时f′(x)g(x)+f(x)g′(x)>0且g(-3)=0,则f(x)g(x)<0的解集为
.
查看答案