满分5 > 高中数学试题 >

已知f(x)=xlnx,g(x)=x3+ax2-x+2. (Ⅰ)如果函数g(x)...

已知f(x)=xlnx,g(x)=x3+ax2-x+2.
(Ⅰ)如果函数g(x)的单调递减区间为manfen5.com 满分网,求函数g(x)的解析式;
(Ⅱ)在(Ⅰ)的条件下,求函数y=g(x)的图象在点P(-1,1)处的切线方程;
(Ⅲ)若不等式2f(x)≤g′(x)+2恒成立,求实数a的取值范围.
(I)求出g(x)的导函数,令导函数小于0得到不等式的解集,得到相应方程的两个根,将根代入,求出a的值. (II)求出g(x)的导数在x=-1的值即曲线的切线斜率,利用点斜式求出切线的方程. (III)求出不等式,分离出参数A,构造函数h(x),利用导数求出h(x)的最大值,令a大于等于最大值,求出a的范围. 【解析】 (I)g′(x)=3x2+2ax-1由题意3x2+2ax-1<0的解集是 即3x2+2ax-1=0的两根分别是. 将x=1或代入方程3x2+2ax-1=0得a=-1. ∴g(x)=x3-x2-x+2.(4分) (II)由(Ⅰ)知:g′(x)=3x2-2x-1,∴g′(-1)=4, ∴点p(-1,1)处的切线斜率k=g′(-1)=4, ∴函数y=g(x)的图象在点p(-1,1)处的切线方程为: y-1=4(x+1),即4x-y+5=0.(8分) (III)∵2f(x)≤g′(x)+2 即:2xlnx≤3x2+2ax+1对x∈(0,+∞)上恒成立 可得对x∈(0,+∞)上恒成立 设,则 令h′(x)=0,得(舍) 当0<x<1时,h′(x)>0;当x>1时,h′(x)<0 ∴当x=1时,h(x)取得最大值-2 ∴a≥-2. ∴a的取值范围是[-2,+∞).(13分)
复制答案
考点分析:
相关试题推荐
在边长为a的正方形ABCD中,E,F分别为BC,CD的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥B-AEF,如图所示.
(Ⅰ)在三棱锥B-AEF中,求证:AB⊥EF;
(Ⅱ)求四棱锥E-AMNF的体积.

manfen5.com 满分网 查看答案
某校为了更好地落实新课改,增加研究性学习的有效性,用分层抽样的方法从其中A、B、C三个学习小组中,抽取若干人进行调研,有关数据见下表(单位:人)
(Ⅰ)求表中x,y的值
(Ⅱ)若从B、C学习小组抽取的人中选2人作感想发言,求这2人都来自C学习小组的概率.
学习小组小组人数抽取人数
A18x
B362
C54y

查看答案
在△ABC中,角A、B、C所对应的边分别为a、b、c,且满足manfen5.com 满分网
(I)求角B的值;
(II)若manfen5.com 满分网,求sinC的值.
查看答案
已知数列{an}满足a1+2a2+22a3+…+2n-1an=n2(n∈N*
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn
查看答案
已知两定点M,N的坐标分别为(-6,0),(6,0),动点P与M,N的连线斜率之积为manfen5.com 满分网,求动点P的轨迹方程,并画出轨迹草图.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.