满分5 > 高中数学试题 >

设数列{an}的通项公式为an=pn+q(n∈N*,P>0).数列{bn}定义如...

设数列{an}的通项公式为an=pn+q(n∈N*,P>0).数列{bn}定义如下:对于正整数m,bm是使得不等式an≥m成立的所有n中的最小值.
(Ⅰ)若manfen5.com 满分网,求b3
(Ⅱ)若p=2,q=-1,求数列{bm}的前2m项和公式;
(Ⅲ)是否存在p和q,使得bm=3m+2(m∈N*)?如果存在,求p和q的取值范围;如果不存在,请说明理由.
(I)先得出an,再解关于n的不等式,利用正整数的条件得出具体结果; (II)先得出an,再解关于n的不等式,根据{bn}的定义求得bn再求得S2m; (III)根据bm的定义转化关于m的不等式恒成立问题. 【解析】 (Ⅰ)由题意,得, 解,得. ∴成立的所有n中的最小正整数为7,即b3=7. (Ⅱ)由题意,得an=2n-1, 对于正整数m,由an≥m,得. 根据bm的定义可知 当m=2k-1时,bm=k(k∈N*); 当m=2k时,bm=k+1(k∈N*). ∴b1+b2++b2m=(b1+b3++b2m-1)+(b2+b4++b2m)=(1+2+3++m)+[2+3+4++(m+1)]=. (Ⅲ)假设存在p和q满足条件,由不等式pn+q≥m及p>0得. ∵bm=3m+2(m∈N*),根据bm的定义可知,对于任意的正整数m都有, 即-2p-q≤(3p-1)m<-p-q对任意的正整数m都成立. 当3p-1>0(或3p-1<0)时,得(或),这与上述结论矛盾! 当3p-1=0,即时,得, 解得.(经检验符合题意) ∴存在p和q,使得bm=3m+2(m∈N*);p和q的取值范围分别是,.
复制答案
考点分析:
相关试题推荐
设向量manfen5.com 满分网=(x+1,y),manfen5.com 满分网=(y,x-1),(x,y∈R)满足|manfen5.com 满分网|+|manfen5.com 满分网|=2manfen5.com 满分网,已知定点A(1,0),动点P(x,y)
(1)求动点P(x,y)的轨迹C的方程;
(2)过原点O作直线l交轨迹C于两点M,N,若,试求△MAN的面积.
(3)过原点O作直线l与直线x=2交于D点,过点A作OD的垂线与以OD为直径的圆交于点G,H(不妨设点G在直线OD上方),试判断线段OG的长度是否为定值?并说明理由.
查看答案
已知复数z1=log2(2x+1)+ki,z2=1-xi(其中x,k∈R),记z1z2的实部为f(x),若函数f(x)是关于x的偶函数,
(1)求k的值;
(2)求函数y=f(log2x)在x∈(0,a],a>0,a∈R上的最小值;
(3)求证:对任意实数m,函数y=f(x)图象与直线manfen5.com 满分网的图象最多只有一个交点.
查看答案
如图,在直径为1的圆O中,作一关于圆心对称、邻边互相垂直的十字形,其中y>x>0.
(Ⅰ)将十字形的面积表示为θ的函数;
(Ⅱ)θ为何值时,十字形的面积最大?最大面积是多少?

manfen5.com 满分网 查看答案
如图,四棱锥P-ABCD的底面ABCD是平行四边形,PF⊥平面ABCD,垂足F在AD上,且AF=manfen5.com 满分网FD,FB⊥FC,FB=FC=2,E是BC的中点,四面体P-BCF的体积为manfen5.com 满分网
(1)求异面直线EF和PC所成的角;
(2)求点D到平面PBF的距离.

manfen5.com 满分网 查看答案
已知f(x)在x∈[a,b]上的最大值为M,最小值为m,给出下列五个命题:
①若对任何x∈[a,b]都有p≤f(x),则p的取值范围是(-∞,m];
②若对任何x∈[a,b]都有p≤f(x),则p的取值范围是(-∞,M];
③若关于x的方程p=f(x)在区间[a,b]上有解,则p的取值范围是[m,M];
④若关于x的不等式p≤f(x)在区间[a,b]上有解,则p的取值范围是(-∞,m];
⑤若关于x的不等式p≤f(x)在区间[a,b]上有解,则p的取值范围是(-∞,M];
其中正确命题的个数为( )
A.4个
B.3个
C.2个
D.1个
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.