(1)由条件求出a1 =1,a2=2,可得an=n.化简f(n+1)-f(n)=>0,可得f(n+1)>f(n).
(2)由上知:{ f(n)}为递增数列,必需 log2x<12 f(2)成立,求出f(2)=,可得log2x<7,求得0<x<128,
由此确定实数a,b满足的条件.
【解析】
(1)∵数列{an}为等差数列,且a1+a2n-1=2n,令n=1可得 a1 =1,再令n=2可得a2=2,故 an=n.
f(n+1)-f(n)=S2(n+1)-Sn+1-[S2n-Sn]=S2(n+1)-S2n-(Sn+1-Sn)
=a2n+2+a2n+1-an+1=-=>0,
∴f(n+1)>f(n).(6分)
(2)由上知:{ f(n)}为递增数列,必需 log2x<12 f(2)成立.(8分)
∵f(2)=S4-S2=,∴log2x<7,
∴0<x<128,∴0<a<b<128.