已知函数f(x)=ax
3+bx
2-3x(a,b∈R)在点(1,f(1))处的切线方程为y+2=0.
(1)求函数f(x)的解析式;
(2)若对于区间[-2,2]上任意两个自变量的值x
1,x
2都有|f(x
1)-f(x
2)|≤c,求实数c的最小值;
(3)若过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,求实数m的取值范围.
考点分析:
相关试题推荐
已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F
1,F
2,且|F
1F
2|=2,点(1,
)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过F
1的直线l与椭圆C相交于A,B两点,且△AF
2B的面积为
,求以F
2为圆心且与直线l相切的圆的方程.
查看答案
己知数列{a
n}满足:a
1=1,a
n+1=
(1)求a
2,a
3;
(2)设b
n=a
2n-2,n∈N
*,求证{b
n} 是等比数列,并求其通项公式;
(3)在(2)条件下,求数列{a
n} 前100项中的所有偶数项的和S.
查看答案
已知矩形ABCD,AD=2AB=2,点E是AD的中点,将△DEC沿CE折起到△D’EC的位置,使二面角D'-EC-B是直二面角.
(1)证明:BE⊥CD’;
(2)求二面角D'-BC-E的余弦值.
查看答案
甲、乙、丙三人进行象棋比赛,每两人比赛一场,共赛三场.每场比赛胜者得3分,负者得0分,没有平局,在每一场比赛中,甲胜乙的概率为
,甲胜丙的概率为
,乙胜丙的概率为
.
(1)求甲获第一名且丙获第二名的概率;
(2)设在该次比赛中,甲得分为ξ,求ξ的分布列和数学期望.
查看答案
已知
,
,函数
(1)求f(x)的最小正周期;
(2)当
时,求函数f(x)的值域.
查看答案