满分5 > 高中数学试题 >

已知函数f(x)=ax3+bx2-3x(a,b∈R)在点(1,f(1))处的切线...

已知函数f(x)=ax3+bx2-3x(a,b∈R)在点(1,f(1))处的切线方程为y+2=0.
(1)求函数f(x)的解析式;
(2)若对于区间[-2,2]上任意两个自变量的值x1,x2都有|f(x1)-f(x2)|≤c,求实数c的最小值;
(3)若过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,求实数m的取值范围.
(1)由题意,利用导函数的几何含义及切点的实质建立a,b的方程,然后求解即可; (2)由题意,对于定义域内任意自变量都使得|f(x1)-f(x2)|≤c,可以转化为求函数在定义域下的最值即可得解; (3)由题意,若过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,等价与函数在切点处导函数值等于切线的斜率这一方程有3解. 【解析】 (1)f'(x)=3ax2+2bx-3.(2分) 根据题意,得即解得 所以f(x)=x3-3x. (2)令f'(x)=0,即3x2-3=0.得x=±1. 当x∈(-∞,-1)时,f′(x)>0,函数f(x)在此区间单调递增; 当x∈(-1,1)时,f′(x)<0,函数f(x)在此区间单调递减 因为f(-1)=2,f(1)=-2, 所以当x∈[-2,2]时,f(x)max=2,f(x)min=-2. 则对于区间[-2,2]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤|f(x)max-f(x)min|=4,所以c≥4. 所以c的最小值为4. (3)因为点M(2,m)(m≠2)不在曲线y=f(x)上,所以可设切点为(x,y). 则y=x3-3x. 因为f'(x)=3x2-3,所以切线的斜率为3x2-3. 则3x2-3=, 即2x3-6x2+6+m=0. 因为过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线, 所以方程2x3-6x2+6+m=0有三个不同的实数解. 所以函数g(x)=2x3-6x2+6+m有三个不同的零点. 则g'(x)=6x2-12x.令g'(x)=0,则x=0或x=2. 当x∈(-∞,0)时,g′(x)>0,函数g(x)在此区间单调递增;当x∈(0,2)时,g′(x)<0,函数g(x)在此区间单调递减; 所以,函数g(x)在x=0处取极大值,在x=2处取极小值,有方程与函数的关系知要满足题意必须满足: ,即,解得-6<m<2.
复制答案
考点分析:
相关试题推荐
已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=2,点(1,manfen5.com 满分网)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过F1的直线l与椭圆C相交于A,B两点,且△AF2B的面积为manfen5.com 满分网,求以F2为圆心且与直线l相切的圆的方程.
查看答案
己知数列{an}满足:a1=1,an+1=manfen5.com 满分网
(1)求a2,a3
(2)设bn=a2n-2,n∈N*,求证{bn} 是等比数列,并求其通项公式;
(3)在(2)条件下,求数列{an} 前100项中的所有偶数项的和S.
查看答案
已知矩形ABCD,AD=2AB=2,点E是AD的中点,将△DEC沿CE折起到△D’EC的位置,使二面角D'-EC-B是直二面角.
(1)证明:BE⊥CD’;
(2)求二面角D'-BC-E的余弦值.

manfen5.com 满分网 查看答案
甲、乙、丙三人进行象棋比赛,每两人比赛一场,共赛三场.每场比赛胜者得3分,负者得0分,没有平局,在每一场比赛中,甲胜乙的概率为manfen5.com 满分网,甲胜丙的概率为manfen5.com 满分网,乙胜丙的概率为manfen5.com 满分网
(1)求甲获第一名且丙获第二名的概率;
(2)设在该次比赛中,甲得分为ξ,求ξ的分布列和数学期望.
查看答案
已知manfen5.com 满分网manfen5.com 满分网,函数manfen5.com 满分网
(1)求f(x)的最小正周期;
(2)当manfen5.com 满分网时,求函数f(x)的值域.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.