(1)本题是对数列的基本量的考查,根据所给的数列的一项和前六项的和,用求和公式,得到它的另一项,算出公差和首项,写出通项公式.
(2)根据所给的等比数列的两个等式,得到等比数列的首项和公比,写出通项,题目要求的是两个数列的积的形式的前n项和,并且一个数列是等比,一个是等差,采用错位相减法.
【解析】
(1)∵数列{an}是等差数列,
∴S6=3(a1+a6)=3(a2+a5)=36.
∵a2=3,∴a5=9,∴3d=a5-a2=6,∴d=2,
又∵a1=a2-d=1,∴an=2n-1.
(2)由等比数列{bn}满足b1+b2=3,b4+b5=24,
得=q3=8,∴q=2,
∵b1+b2=3,∴b1+b1q=3,∴b1=1,bn=2n-1,
∴an•bn=(2n-1)•2n-1.
∴Tn=1×1+3×2+5×22+…+(2n-3)•2n-2+(2n-1)•2n-1,
则2Tn=1×2+3×22+5×23+…+(2n-3)•2n-1+(2n-1)•2n,
两式相减得(1-2)Tn=1×1+2×2+2×22++2•2n-2+2•2n-1-(2n-1)•2n,即
-Tn=1+2(21+22++22n-1)-(2n-1)•2n
=1+2(2n-2)-(2n-1)•2n=(3-2n)•2n-3,
∴Tn=(2n-3)•2n+3.