满分5 > 高中数学试题 >

连掷两次骰子得到的点数分别为m和n,记向量与向量的夹角为θ,则的概率是( ) A...

连掷两次骰子得到的点数分别为m和n,记向量manfen5.com 满分网与向量manfen5.com 满分网的夹角为θ,则manfen5.com 满分网的概率是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
由题意知本题是一个古典概型,根据分步计数原理可以得到试验发生包含的所有事件数,满足条件的事件数要通过列举得到,题目大部分内容考查的是向量的问题,这是一个综合题. 【解析】 由题意知本题是一个古典概型, 试验发生包含的所有事件数6×6, ∵m>0,n>0, ∴=(m,n)与=(1,-1)不可能同向. ∴夹角θ≠0. ∵θ∈(0,】 •≥0,∴m-n≥0, 即m≥n. 当m=6时,n=6,5,4,3,2,1; 当m=5时,n=5,4,3,2,1; 当m=4时,n=4,3,2,1; 当m=3时,n=3,2,1; 当m=2时,n=2,1; 当m=1时,n=1. ∴满足条件的事件数6+5+4+3+2+1 ∴概率P==. 故选C.
复制答案
考点分析:
相关试题推荐
曲线y=xlnx在点M(e,e)处的切线l在两坐标轴上的截距分别为a,b,则a+b=( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
manfen5.com 满分网是纯虚数,则tanθ的值为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
已知全集U={x|x>-3},集合A={x|x<-2或x>3},B={x|-1≤x≤4},那么集合A∩(CUB)=( )
A.{x|-2≤x≤4}
B.{x|-3<x<-2或x>4}
C.{x|-2≤x≤-1}
D.{x|x<-2或x>4}
查看答案
已知函数f(x)=ax3+bx2-3x在x=±1处取得极值
(1)求函数f(x)的解析式;
(2)求证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4;
(3)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的范围.
查看答案
如图,设椭圆manfen5.com 满分网的右顶点与上顶点分别为A、B,以A为圆心,OA为半径的圆与以B为圆心,OB为半径的圆相交于点O、P.
(1)若点P在直线manfen5.com 满分网上,求椭圆的离心率;
(2)在(1)的条件下,设M是椭圆上的一动点,且点N(0,1)到椭圆上点的最近距离为3,求椭圆的方程.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.