满分5 > 高中数学试题 >

(文)已知a,b为常数,且a≠0,函数f(x)=-ax+b+axlnx,f(e)...

(文)已知a,b为常数,且a≠0,函数f(x)=-ax+b+axlnx,f(e)=2(e=2.71828…是自然对数的底数).
(1)求实数b的值;
(2)求函数f(x)的单调区间;
(3)当a=1时,求函数manfen5.com 满分网的值域.
(1)根据已知中f(x)=-ax+b+axlnx,求出f(e)=b,且f(e)=2,得b=2. (2)求出导数f'(x)=alnx,利用导数与单调性的关系,分a>0,a<0两种情形求解. (3)当a=1时,f′(x)=ln,,求出导函数零点后,利用零点分段法,分类讨论后,即可得到函数f(x)的值域. 【解析】 (1)由f(e)=-ae+b+aelne=b,且f(e)=2,得b=2. (2)由(1)可得f(x)=-ax+2+axlnx.从而f′(x)=alnx.因为a≠0,故: ①当a>0时,由f′(x)>0得x>1,由f′(x)<0得0<x<1; ②当a<0时,由f′(x)>0得0<x<1,由f′(x)<0得x>1. 综上,当a>0时,函数f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1); 当a<0时,函数f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞). (3)当a=1时,f(x)=-x+2+xlnx,f′(x)=lnx. 由(2)可得,当x在区间内变化时,f′(x),f(x)的变化情况如下表: x () 1 (1,e) e f′(x)   - +   f(x) 2- 单调递减 极小值1 单调递增 2 又2-<2,所以函数f(x)(x∈)的值域为[1,2].
复制答案
考点分析:
相关试题推荐
某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式manfen5.com 满分网,其中3<x<6,a为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.
(Ⅰ)求a的值
(Ⅱ)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.
查看答案
已知函数manfen5.com 满分网
(Ⅰ)求f(x)的最小正周期:
(Ⅱ)求f(x)在区间manfen5.com 满分网上的最大值和最小值.
查看答案
△ABC中,D为边BC上的一点,BD=33,sinB=manfen5.com 满分网,cos∠ADC=manfen5.com 满分网,求AD.
查看答案
已知函数f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1
(1)求f(9),f(27)的值
(2)解不等式f(x)+f(x-8)<2.
查看答案
已知等差数列{an}中,a1=1,a3=-3.
(I)求数列{an}的通项公式;
(II)若数列{an}的前k项和Sk=-35,求k的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.