满分5 > 高中数学试题 >

设函数f(x)=, (1)求函数f(x)的单调区间; (2)若k>0,求不等式f...

设函数f(x)=manfen5.com 满分网
(1)求函数f(x)的单调区间;
(2)若k>0,求不等式f′(x)+k(1-x)f(x)>0的解集.
(1)对函数f(x)进行求导,当导数大于0时是单调递增区间,当导数小于0时是原函数的单调递减区间. (2)将f'(x)代入不等式即可求解. 【解析】 (1)∵f(x)= ∴ 由f'(x)=0,得x=1, 因为当x<0时,f'(x)<0; 当0<x<1时,f'(x)<0;当x>1时,f'(x)>0; 所以f(x)的单调增区间是:[1,+∝);单调减区间是:(-∞,0),(0,1] (2)由f'(x)+k(1-x)f(x)==>0, 得:(x-1)(kx-1)<0, 故:当0<k<1时,解集是:{x|1<x<}; 当k=1时,解集是:φ; 当k>1时,解集是:{x|<x<1}.
复制答案
考点分析:
相关试题推荐
若不等式manfen5.com 满分网≤k(x+2)-manfen5.com 满分网的解集为区间[a,b],且b-a=2,则k=    查看答案
设函数f(x)=manfen5.com 满分网(a<0)的定义域为D,若所有点(s,f(x))(s,t∈D)构成一个正方形区域,则a的值为    查看答案
函数f(x)的定义域为开区间(a,b),导函数 f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极小值点的个数为    个.
manfen5.com 满分网 查看答案
二次函数f(x)的二次项系数为正,且对于任意实数x恒有f(2+x)=f(2-x),若f(1-2x2)<f(1+2x-x2)则x的取值范围是    查看答案
对于二次函数f(x)=4x2-2(p-2)x-2p2-p+1,若在区间[-1,1]内至少存在一个数c 使得f(c)>0,则实数p的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.