满分5 > 高中数学试题 >

一个盒子中装有4张卡片,上面分别写着如下四个定义域为R的函数:f1(x)=x3,...

一个盒子中装有4张卡片,上面分别写着如下四个定义域为R的函数:f1(x)=x3,f2(x)=|x|,f3(x)=sinx,f4(x)=cosx现从盒子中任取2张卡片,将卡片上的函数相乘得到一个新函数,所得函数为奇函数的概率是   
首先分析可得,从4张卡片中任取2张卡片,有C42种取法;再判断所给函数的奇偶性,由函数奇偶性的性质可得,要使从盒子中任取2张卡片,将卡片上的函数相乘得到的是奇函数,则所取的函数必须是一奇一偶;由分步计数原理可得得到函数为奇函数的情况数目,由等可能事件的概率公式计算可得答案. 【解析】 从4张卡片中任取2张卡片,有C42种取法; 所给的四个函数中:f1(x)=x3和f3(x)=sinx是奇函数,f2(x)=|x|和f4(x)=cosx是偶函数, 要使从盒子中任取2张卡片,将卡片上的函数相乘得到的是奇函数,则所取的函数必须是一奇一偶; 即必须在f1(x)=x3和f3(x)=sinx中任取一个,然后在f2(x)=|x|和f4(x)=cosx任取一个, 有C21•C21种取法; 其概率为p==. 故答案为.
复制答案
考点分析:
相关试题推荐
在样本的频率分布直方图中,一共有n个小矩形,若中间一个小矩形的面积等于其余(n-1)个小矩形面积之和的manfen5.com 满分网,且样本容量为240,则中间一组的频数是    查看答案
若将复数(1-i)(1+2i)2表示为p+qi(p,q∈R,i是虚数单位)的形式,则p+q=    查看答案
manfen5.com 满分网=    查看答案
已知函数y=kx与y=x2+2(x≥0)的图象相交于A(x1,y1),B(x2,y2),l1,l2分别是y=x2+2(x≥0)的图象在A,B两点的切线,M,N分别是l1,l2与x轴的交点.
(I)求k的取值范围;
(II)设t为点M的横坐标,当x1<x2时,写出t以x1为自变量的函数式,并求其定义域和值域;
(III)试比较|OM|与|ON|的大小,并说明理由(O是坐标原点).
查看答案
对于函数f(x)=ax2+(b+1)x+b-2(a≠0),若存在实数x,使f(x)=x成立,则称x为f(x)的不动点.
(1)当a=2,b=-2时,求f(x)的不动点;
(2)若对于任何实数b,函数f(x)恒有两相异的不动点,求实数a的取值范围;
(3)在(2)的条件下,若y=f(x)的图象上A、B两点的横坐标是函数f(x)的不动点,且直线manfen5.com 满分网是线段AB的垂直平分线,求实数b的取值范围.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.