满分5 > 高中数学试题 >

投掷四枚不同的金属硬币A、B、C、D,假定A、B两枚正面向上的概率均为,另两枚C...

投掷四枚不同的金属硬币A、B、C、D,假定A、B两枚正面向上的概率均为manfen5.com 满分网,另两枚C、D为非均匀硬币,正面向上的概率均为a(0<a<1),把这四枚硬币各投掷一次,设ξ表示正面向上的枚数.
(1)若A、B出现一正一反与C、D出现两正的概率相等,求a的值;
(2)求ξ的分布列及数学期望(用a表示);
(3)若出现2枚硬币正面向上的概率最大,试求a的取值范围.
(1)A、B出现一正一反的概率为,C、D出现两正的概率为a2,由于两个概率相等,即可列出关于a的方程 (2)ξ的可能的值为0,1,2,3,4其中0和4时直接计算即可,ξ的值为1时要分是A,B还是C,D正面向上;ξ的值为2时要分都是A,B中的,都是C,D中的,A,B和C,D中个一个;ξ的值为3时要分ABC,ABD,CDA,CDB然后根据n次独立重复试验中恰好发生k次的概率,和独立事件的概率定义即可求出ξ的分布列,数学期望由求出ξ的分布列即可求解 (3)利用出现2枚硬币正面向上的概率最大建立关于a的不等关系,即可求a的取值范围. 【解析】 (1)由题意得: ∴a= (2)ξ=0,1,2,3,4 P(ξ=0)=, P(ξ=1)= P(ξ=2)= P(ξ=3)= P(ξ=4)=, 得ξ得分布列为: ∴Eξ=1×+2×+3×+4×=2a+1 (3)∵0<a<1,显然,即P(ξ=0)<P(ξ=1) ∵ 由P(ξ=2)-P(ξ=1)=-(1-a)= 且P(ξ=2)-P(ξ=3)== 得解得 即a三问取值范围是:[]
复制答案
考点分析:
相关试题推荐
已知圆的极坐标方程为:manfen5.com 满分网
(1)将极坐标方程化为普通方程;
(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.
查看答案
变换T1是逆时针旋转manfen5.com 满分网的旋转变换,对应的变换矩阵是M1;变换T2对应用的变换矩阵是manfen5.com 满分网
(Ⅰ)求点P(2,1)在T1作用下的点P'的坐标;
(Ⅱ)求函数y=x2的图象依次在T1,T2变换的作用下所得曲线的方程.
查看答案
已知函数f(x)=x(x-a)(x-b),点A(m,f(m)),B(n,f(n)).
(1)设b=a,求函数f(x)的单调区间;
(2)若函数f(x)的导函数f′(x)满足:当|x|≤l时,有|f′(x)|≤manfen5.com 满分网恒成立,求函数f(x)的表达式;
(3)若0<a<b,函数f(x)在x=m和x=n处取得极值,且a+b≤2manfen5.com 满分网.问:是否存在常数a、b,使得manfen5.com 满分网manfen5.com 满分网=0?若存在,求出a,b的值;若不存在,请说明理由.
查看答案
已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.
(1)求曲线C的方程;
(2)设n是过原点的直线,l是与n垂直相交于点P,且与曲线C相交于A、B两点的直线,且manfen5.com 满分网,问:是否存在上述直线l使manfen5.com 满分网成立?若存在,求出直线l的方程,若不存在,请说明理由.
查看答案
将数列{an}中的所有项按每一行比上一行多一项的规则排成如下数表:a1a2a3a4a5a6a7a8a9a10…记表中的第一列数a1,a2,a4,a7,…构成的数列为{bn},b1=a1=1.Sn为数列{bn}的前n项和,且满足manfen5.com 满分网
(Ⅰ)证明数列manfen5.com 满分网成等差数列,并求数列{bn}的通项公式;
(Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当manfen5.com 满分网时,求上表中第k(k≥3)行所有项的和.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.