满分5 > 高中数学试题 >

已知函数f(x)=x3+2bx2+cx-2的图象在与x轴交点处的切线方程是y=5...

已知函数f(x)=x3+2bx2+cx-2的图象在与x轴交点处的切线方程是y=5x-10.
(1)求函数f(x)的解析式;
(2)设函数g(x)=f(x)+manfen5.com 满分网mx,若g(x)的极值存在,求实数m的取值范围以及函数g(x)取得极值时对应的自变量x的值.
(1)利用f(2)=0和f′(2)=5可得关于b,c的两个方程,解出b,c即可. (2)转化为g′(x)=0有实根.根据判别式求出对应的根,在找极值即可. 【解析】 (1)由已知,切点为(2,0),故有f(2)=0, 即4b+c+3=0.① f′(x)=3x2+4bx+c,由已知,f′(2)=12+8b+c=5. 得8b+c+7=0.② 联立①、②,解得c=1,b=-1, 于是函数解析式为f(x)=x3-2x2+x-2. (2)g(x)=x3-2x2+x-2+mx, g′(x)=3x2-4x+1+,令g′(x)=0. 当函数有极值时,△≥0,方程3x2-4x+1+=0有实根, 由△=4(1-m)≥0,得m≤1. ①当m=1时,g′(x)=0有实根x=,在x=左右两侧均有g′(x)>0,故函数g(x)无极值. ②当m<1时,g′(x)=0有两个实根, x1=(2-),x2=(2+), 当x变化时,g′(x)、g(x)的变化情况如下表: 故在m∈(-∞,1)时,函数g(x)有极值; 当x=(2-)时g(x)有极大值; 当x=(2+)时g(x)有极小值.
复制答案
考点分析:
相关试题推荐
如图(1)在等腰△ABC中,D,E,F分别是AB,AC和BC边的中点,∠ACB=120°,现将△ABC沿CD翻折成直二面角A-DC-B.(如图(2))
(I)试判断直线AB与平面DEF的位置关系,并说明理由;
(II)求二面角E-DF-C的余弦值;
(III)在线段BC是否存在一点P,但AP⊥DE?证明你的结论.

manfen5.com 满分网 查看答案
某企业招聘中,依次进行A科、B科考试,当A科合格时,才可考B科,且两科均有一次补考机会,两科都合格方通过.甲参加招聘,已知他每次考A科合格的概率均为manfen5.com 满分网,每次考B科合格的概率均为manfen5.com 满分网.假设他不放弃每次考试机会,且每次考试互不影响.
(I)求甲恰好3次考试通过的概率;
(II)求甲招聘考试通过的概率.
查看答案
设△ABC的内角A、B、C的对边长分别为a、b、c,已知△ABC的周长为3,且sinA+sinB=2sinC.
(I)求边c的长;
(II)若△ABC的面积为manfen5.com 满分网,求角C的余弦值.
查看答案
已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.
(I)求数列{an}的通项;
(II)记manfen5.com 满分网,求数列{bn}的前n项和Sn
查看答案
定义在R上的奇函数y=f(x),对任意不等的实数x1,x2都有[f(x1)-f(x2)](x1-x2)<0成立,若不等式f(x2-2x)+f(2y-y2)≤0成立,则当1≤x≤4时,manfen5.com 满分网的取值范围为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.