满分5 > 高中数学试题 >

如图,为半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为线段OD的中点,已...

如图,manfen5.com 满分网为半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变.
(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;
(Ⅱ)过点B的直线l与曲线C交于M、N两点,与OD所在直线交于E点,若manfen5.com 满分网为定值.

manfen5.com 满分网
(Ⅰ)直接以AB、OD所在直线分别为x轴、y轴,O为原点,建立平面直角坐标系,再根据动点P在曲线C上运动且保持|PA|+|PB|的值不变且点Q在曲线C上,可以求得|PA|+|PB|=|QA|+|QB|=2>|AB|=4、曲线C是为以原点为中心,A、B为焦点的椭圆进而求出a,b,c得到曲线C的方程; (Ⅱ):先设M,N,E点的坐标分别为M(x1,y1),N(x2,y2),E(0,y),分析出过点B的直线l必与椭圆C相交;再根据,求出点M的坐标代入椭圆方程,同理求出点N的坐标代入椭圆方程,两个方程相结合即可求出结论. 【解析】 (Ⅰ)以AB、OD所在直线分别为x轴、y轴,O为原点,建立平面直角坐标系, ∵动点P在曲线C上运动且保持|PA|+|PB|的值不变、且点Q在曲线C上, ∴|PA|+|PB|=|QA|+|QB|=2>|AB|=4、 ∴曲线C是为以原点为中心,A、B为焦点的椭圆 设其长半轴为a,短半轴为b,半焦距为c,则2a=2,∴a=,c=2,b=1、 ∴曲线C的方程为+y2=1(5分) (Ⅱ):设M,N,E点的坐标分别为M(x1,y1),N(x2,y2),E(0,y), 又易知B点的坐标为(2,0)、且点B在椭圆C内,故过点B的直线l必与椭圆C相交、 ∵,∴(x1,y1-y)=λ1(2-x1,-y1)、 ∴,、(7分) 将M点坐标代入到椭圆方程中得:, 去分母整理,得λ12+10λ1+5-5y2=0、(10分) 同理,由可得:λ22+10λ2+5-5y2=0、 ∴λ1,λ2是方程x2+10x+5-5y2=0的两个根, ∴λ1+λ2=-10、(12分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x3+2bx2+cx-2的图象在与x轴交点处的切线方程是y=5x-10.
(1)求函数f(x)的解析式;
(2)设函数g(x)=f(x)+manfen5.com 满分网mx,若g(x)的极值存在,求实数m的取值范围以及函数g(x)取得极值时对应的自变量x的值.
查看答案
如图(1)在等腰△ABC中,D,E,F分别是AB,AC和BC边的中点,∠ACB=120°,现将△ABC沿CD翻折成直二面角A-DC-B.(如图(2))
(I)试判断直线AB与平面DEF的位置关系,并说明理由;
(II)求二面角E-DF-C的余弦值;
(III)在线段BC是否存在一点P,但AP⊥DE?证明你的结论.

manfen5.com 满分网 查看答案
某企业招聘中,依次进行A科、B科考试,当A科合格时,才可考B科,且两科均有一次补考机会,两科都合格方通过.甲参加招聘,已知他每次考A科合格的概率均为manfen5.com 满分网,每次考B科合格的概率均为manfen5.com 满分网.假设他不放弃每次考试机会,且每次考试互不影响.
(I)求甲恰好3次考试通过的概率;
(II)求甲招聘考试通过的概率.
查看答案
设△ABC的内角A、B、C的对边长分别为a、b、c,已知△ABC的周长为3,且sinA+sinB=2sinC.
(I)求边c的长;
(II)若△ABC的面积为manfen5.com 满分网,求角C的余弦值.
查看答案
已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.
(I)求数列{an}的通项;
(II)记manfen5.com 满分网,求数列{bn}的前n项和Sn
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.