如图,
为半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变.
(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;
(Ⅱ)过点B的直线l与曲线C交于M、N两点,与OD所在直线交于E点,若
为定值.
考点分析:
相关试题推荐
已知函数f(x)=x
3+2bx
2+cx-2的图象在与x轴交点处的切线方程是y=5x-10.
(1)求函数f(x)的解析式;
(2)设函数g(x)=f(x)+
mx,若g(x)的极值存在,求实数m的取值范围以及函数g(x)取得极值时对应的自变量x的值.
查看答案
如图(1)在等腰△ABC中,D,E,F分别是AB,AC和BC边的中点,∠ACB=120°,现将△ABC沿CD翻折成直二面角A-DC-B.(如图(2))
(I)试判断直线AB与平面DEF的位置关系,并说明理由;
(II)求二面角E-DF-C的余弦值;
(III)在线段BC是否存在一点P,但AP⊥DE?证明你的结论.
查看答案
某企业招聘中,依次进行A科、B科考试,当A科合格时,才可考B科,且两科均有一次补考机会,两科都合格方通过.甲参加招聘,已知他每次考A科合格的概率均为
,每次考B科合格的概率均为
.假设他不放弃每次考试机会,且每次考试互不影响.
(I)求甲恰好3次考试通过的概率;
(II)求甲招聘考试通过的概率.
查看答案
设△ABC的内角A、B、C的对边长分别为a、b、c,已知△ABC的周长为3,且sinA+sinB=2sinC.
(I)求边c的长;
(II)若△ABC的面积为
,求角C的余弦值.
查看答案
已知{a
n}是公差不为零的等差数列,a
1=1,且a
1,a
3,a
9成等比数列.
(I)求数列{a
n}的通项;
(II)记
,求数列{b
n}的前n项和S
n.
查看答案