如图,AB是圆柱ABFG的母线,C是点A关于点B对称的点,O是圆柱上底面的圆心,BF过O点,DE是过O点的动直径,且AB=2,BF=2AB.
(1)求证:BE⊥平面ACD;
(2)当三棱锥D-BCE的体积最大时,求二面角C-DE-A的平面角的余弦值.
考点分析:
相关试题推荐
“肇实,正名芡实,因肇庆所产之芡实颗粒大、药力强,故名.”某科研所为进一步改良肇实,为此对肇实的两个品种(分别称为品种A和品种B)进行试验.选取两大片水塘,每大片水塘分成n小片水塘,在总共2n小片水塘中,随机选n小片水塘种植品种A,另外n小片水塘种植品种B.
(1)假设n=4,在第一大片水塘中,种植品种A的小片水塘的数目记为ξ,求ξ的分布列和数学期望;
(2)试验时每大片水塘分成8小片,即n=8,试验结束后得到品种A和品种B在每个小片水塘上的每亩产量(单位:kg/亩)如下表:
号码 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
品种A | 101 | 97 | 92 | 103 | 91 | 100 | 110 | 106 |
品种B | 115 | 107 | 112 | 108 | 111 | 120 | 110 | 113 |
分别求品种A和品种B的每亩产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
查看答案
如图,某测量人员,为了测量西江北岸不能到达的两点A,B之间的距离,她在西江南岸找到一个点C,从C点可以观察到点A,B;找到一个点D,从D点可以观察到点A,C;找到一个点E,从E点可以观察到点B,C;并测量得到数据:∠ACD=90°,∠ADC=60°,∠ACB=15°,∠BCE=105°,∠CEB=45°,DC=CE=1(百米).
(1)求△CDE的面积;
(2)求A,B之间的距离.
查看答案
(选做题)如图,AB的延长线上任取一点C,过C作圆的切线CD,切点为D,∠ACD的平分线交AD于E,则∠CED=
.
查看答案
在极坐标系中,曲线ρ=2与cosθ+sinθ=0(0≤θ≤π)的交点的极坐标为
.
查看答案
若点P在直线l
1:x+my+3=0上,过点P的直线l
2与圆C:(x-5)
2+y
2=16只有一个公共点M,且|PM|的最小值为4,则m=
.
查看答案