满分5 > 高中数学试题 >

若集合A=[1,6],且满足A∩B=∅,则集合B可以是( ) A.[1,3] B...

若集合A=[1,6],且满足A∩B=∅,则集合B可以是( )
A.[1,3]
B.[2,6]
C.(1,7]
D.(8,9)
根据题意,依次分析选项,验证A∩B=∅是否成立,可得答案. 【解析】 根据交集的概念,依次分析选项: 对于A,有A∩B=[1,3],不符合题意, 对于B,有A∩B=[2,6],不符合题意, 对于C,有A∩B=(1,6],不符合题意, 对于D,有A∩B=∅,符合题意, 故选D.
复制答案
考点分析:
相关试题推荐
设函数f(x)=x3+ax2+bx(x>0)的图象与直线y=4相切于M(1,4).
(1)求y=f(x)在区间(0,4]上的最大值与最小值;
(2)是否存在两个不等正数s,t(s<t),当s≤x≤t时,函数f(x)=x3+ax2+bx的值域是[s,t],若存在,求出所有这样的正数s,t;若不存在,请说明理由.
查看答案
已知点P是圆F1manfen5.com 满分网上任意一点,点F2与点F1关于原点对称.线段PF2的中垂线与PF1交于M点.
(1)求点M的轨迹C的方程;
(2)设轨迹C与x轴的两个左右交点分别为A,B,点K是轨迹C上异于A,B的任意一点,KH⊥x轴,H为垂足,延长HK到点Q使得HK=KQ,连接AQ延长交过B且垂直于x轴的直线l于点D,N为DB的中点.试判断直线QN与以AB为直径的圆O的位置关系.
查看答案
数列{an}的前n项和记为Sn,a1=t,点(Sn,an+1)在直线y=2x+1上,n∈N*
(1)若数列{an}是等比数列,求实数t的值;
(2)设bn=nan,在(1)的条件下,求数列{bn}的前n项和Tn
(3)设各项均不为0的数列{cn}中,所有满足ci•ci+1<0的整数i的个数称为这个数列{cn}的“积异号数”,令manfen5.com 满分网(n∈N*),在(2)的条件下,求数列{cn}的“积异号数”.
查看答案
如图,AB是圆柱ABFG的母线,C是点A关于点B对称的点,O是圆柱上底面的圆心,BF过O点,DE是过O点的动直径,且AB=2,BF=2AB.
(1)求证:BE⊥平面ACD;
(2)当三棱锥D-BCE的体积最大时,求二面角C-DE-A的平面角的余弦值.

manfen5.com 满分网 查看答案
“肇实,正名芡实,因肇庆所产之芡实颗粒大、药力强,故名.”某科研所为进一步改良肇实,为此对肇实的两个品种(分别称为品种A和品种B)进行试验.选取两大片水塘,每大片水塘分成n小片水塘,在总共2n小片水塘中,随机选n小片水塘种植品种A,另外n小片水塘种植品种B.
(1)假设n=4,在第一大片水塘中,种植品种A的小片水塘的数目记为ξ,求ξ的分布列和数学期望;
(2)试验时每大片水塘分成8小片,即n=8,试验结束后得到品种A和品种B在每个小片水塘上的每亩产量(单位:kg/亩)如下表:
 号码12345678
品种A101979210391100110106
品种B115107112108111120110113
分别求品种A和品种B的每亩产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.