满分5 > 高中数学试题 >

已知椭圆的中心是坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点...

已知椭圆的中心是坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)在线段OF上是否存在点M(m,0),使得|MP|=|MQ|?若存在,求出m的取值范围;若不存在,请说明理由.
(Ⅰ)先确定椭圆的短半轴长,再根据两个焦点和短轴的两个端点恰为一个正方形的顶点,即可求出椭圆的方程;(Ⅱ)分类讨论:(1)若l与x轴重合时,显然M与原点重合,m=0;(2)若直线l的斜率k≠0,则可设l:y=k(x-1),与椭圆的方程联立,确定PQ的中点横坐标,进而可得PQ的中点的坐标,根据|MP|=|MQ|,即可求得m的取值范围. 【解析】 (Ⅰ)因为椭圆的短轴长:2b=2⇒b=1, 又因为两个焦点和短轴的两个端点恰为一个正方形的顶点,所以:b=c⇒a2=b2+c2=2; 故椭圆的方程为:…(4分) (Ⅱ)(1)若l与x轴重合时,显然M与原点重合,m=0; (2)若直线l的斜率k≠0,则可设l:y=k(x-1),设P(x1,y1),Q(x2,y2)则: 所以化简得:(1+2k2)x2-4k2x+2k2-2=0;PQ的中点横坐标为:, 代入l:y=k(x-1)可得:PQ的中点为N, 由于|MP|=|MQ|得到 所以:综合(1)(2)得到:…(14分)
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,其中a,b∈R.
(Ⅰ)若曲线y=f(x)在点P(2,f(2))处的切线方程为y=3x+1,求函数f(x)的解析式;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)若对于任意的manfen5.com 满分网,不等式f(x)≤10在manfen5.com 满分网上恒成立,求b的取值范围.
查看答案
在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC中点,PO⊥平面ABCD,PO=2,M为PD中点.
(Ⅰ)求证:PB∥平面ACM;
(Ⅱ)求证:AD⊥平面PAC;
(Ⅲ)求二面角M-AC-D的正切值.

manfen5.com 满分网 查看答案
已知某单位有50名职工,现要从中抽取10名职工,将全体职工随机按1~50编号,并按编号顺序平均分成10组,按各组内抽取的编号依次增加5进行系统抽样.
(Ⅰ)若第1组抽出的号码为2,写出所有被抽出职工的号码;
(Ⅱ)分别统计这10名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示,求该样本的方差;
(Ⅲ)在(Ⅱ)的条件下,从体重不轻于73公斤(≥73公斤)的职工中抽取2人,求体重为76公斤的职工被抽取到的概率.

manfen5.com 满分网 查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.
(1)求角C的大小;
(2)求manfen5.com 满分网sinA-cos(B+manfen5.com 满分网)的最大值,并求取得最大值时角A、B的大小.
查看答案
已知函数manfen5.com 满分网若存在x1,x2,当0≤x1<x2<2时,f(x1)=f(x2),则x1f(x2)的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.