满分5 > 高中数学试题 >

函数的导函数的零点为( ) A.1或-1 B.- C. D.1

函数manfen5.com 满分网的导函数的零点为( )
A.1或-1
B.-manfen5.com 满分网
C.manfen5.com 满分网
D.1
先求出原函数导函数y′,再解方程y′=0,方程的解即为函数y′的零点. 【解析】 函数,求导得y′=-x. 由-x=0.解得x=1,即函数y′的零点为1 故选D.
复制答案
考点分析:
相关试题推荐
若全集U={1,2,3,4,5},CUP={4,5},则集合P可以是( )
A.{x∈N*||x|<4}
B.{x∈N*|x<6}
C.{x∈N*|x2≤16}
D.{x∈N*|1≤x≤4}
查看答案
manfen5.com 满分网
(1)当λ1=1,λ2=0时,设x1,x2是f(x)的两个极值点,
①如果x1<1<x2<2,求证:f'(-1)>3;
②如果a≥2,且x2-x1=2且x∈(x1,x2)时,函数g(x)=f'(x)+2(x-x2)的最小值为h(a),求h(a)的最大值.
(2)当λ1=0,λ2=1时,
①求函数y=f(x)-3(ln3+1)x的最小值.
②对于任意的实数a,b,c,当a+b+c=3时,求证3aa+3bb+3cc≥9.
查看答案
已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线l交椭圆于A、B两点.
(1)求椭圆的方程;
(2)已知manfen5.com 满分网,是否对任意的正实数t,λ,都有manfen5.com 满分网成立?请证明你的结论.
查看答案
已知如图四棱锥P-ABCD中,底面ABCD是平行四边形,PG⊥平面ABC,垂足G在AD上,且manfen5.com 满分网,E是BC的中点.
(1)求证:PC⊥BG;
(2)求异面直线GE与PC所成角的余弦值;
(3)若F是PC上一点,且manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
设数列{an}的前n项和为Sn,已知manfen5.com 满分网(n∈N*).
(1)求数列{an}的通项公式;
(2)设manfen5.com 满分网,数列{bn}的前n项和为Bn,若存在整数m,使对任意n∈N*且n≥2,都有manfen5.com 满分网成立,求m的最大值;
(3)令manfen5.com 满分网,数列{cn}的前n项和为Tn,求证:当n∈N*且n≥2时,manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.