设P(x,y),则A(-1,0),B(1,0),=(-1-x,-y),=(1-x,y),•=(-1-x,-y)•(1-x,y)=x2+y2-1;由圆内的动点P使,,成等比数列可求得x2-y2=,从而得x2≥.又P在圆内,故x2+y2-1<0,继而得到答案.
【解析】
设P(x,y),则A(-1,0),B(1,0),=(-1-x,-y),=(1-x,y),
∵,,成等比数列,
∴=•,
∴(x2+y2)2=[(-1-x)2+y2][(1-x)2+y2]
=(x2+y2+1)2-4x2,
∴x2-y2=,
∴y2=x2-,x2≥.
∴•=(-1-x,-y)•(1-x,y)=x2+y2-1=x2+(x2-)-1=2x2-≥2×-=-①
又P在圆内,故x2+y2-1<0,即•<0②
由①②得:-≤•<0.
故选B.