满分5 > 高中数学试题 >

某校为了解学生的视力情况,随机抽查了一部分学生视力,将调查结果分组,分组区间为(...

某校为了解学生的视力情况,随机抽查了一部分学生视力,将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],…,(5.1,5.4].经过数据处理,得到如下频率分布表:
分组频数频率
(3.9,4.2]30.06
(4.2,4.5]60.12
(4.5,4.8]25x
(4.8,5.1]yz
(5.1,5.4]20.04
合计n1.00
(I)求频率分布表中未知量n,x,y,z的值;
(II)从样本中视力在(3.9,4.2]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率.
(I)根据题意,由(5.1,5.4]一组频数为2,频率为0.04,可得,解可得n的值,进而由,可得x的值,由频数之和为50,可得y的值,由频率、频数的关系可得z的值; (II)设样本视力在(3.9,4.2]的3人为a,b,c,样本视力在(5.1,5.4]的2人为d,e;由题意列举从5人中任取两人的基本事件空间Ω,可得其基本事件的数目,设事件A表示“抽取的两人的视力差的绝对值低于0.5”,由Ω可得基本事件数目,由等可能事件的概率,计算可得答案. 【解析】 (I)由表可知,样本容量为n, 由(5.1,5.4]一组频数为2,频率为0.04,则,得n=50 由,解可得,x=50; y=50-3-6-25-2=14,, (II)设样本视力在(3.9,4.2]的3人为a,b,c;样本视力在(5.1,5.4]的2人为d,e.    由题意从5人中任取两人的基本事件空间为:Ω={(a,d),(a,e),(b,d),(b,e),(c,d),(c,e),(a,b),(a,c),(b,c),(d,e)},共10个基本事件; 设事件A表示“抽取的两人的视力差的绝对值低于0.5”,则事件A包含的基本事件有:(a,b),(a,c),(b,c),(d,e),共4个基本事件; P(A)==, 故抽取的两人的视力差的绝对值低于0.5的概率为.
复制答案
考点分析:
相关试题推荐
如图,在四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,E是AB上一点.已知PD=manfen5.com 满分网,CD=4,AD=manfen5.com 满分网
(Ⅰ)若∠ADE=manfen5.com 满分网,求证:CE⊥平面PDE;
(Ⅱ)当点A到平面PDE的距离为manfen5.com 满分网时,求三棱锥A-PDE的侧面积.

manfen5.com 满分网 查看答案
在△ABC中,角A、B、C的对边分别为a、b、c,已知B=60°,cos(B+C)=-manfen5.com 满分网
(Ⅰ)求cosC的值;
(Ⅱ)若a=5,求△ABC的面积.
查看答案
商家通常依据“乐观系数准则”确定商品销售价格,及根据商品的最低销售限价a,最高销售限价b(b>a)以及常数x(0<x<1)确定实际销售价格c=a+x(b-a),这里,x被称为乐观系数.
经验表明,最佳乐观系数x恰好使得(c-a)是(b-c)和(b-a)的等比中项,据此可得,最佳乐观系数x的值等于    查看答案
已知球的直径SC=4,A,B是该球球面上的两点,AB=2,∠ASC=∠BSC=45°,则棱锥S-ABC的体积为    查看答案
若不等式x2-kx+k-1>0对x∈(1,2)恒成立,则实数k的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.