满分5 > 高中数学试题 >

已知各项均为正数的数列{an}的前n项和Sn满足S1>1,且6Sn=(an+1)...

已知各项均为正数的数列{an}的前n项和Sn满足S1>1,且6Sn=(an+1)(an+2),n∈N*
(I)求数列{an}的通项公式;
(II)设数列{bn}满足manfen5.com 满分网,记Tn为数列{bn}的前n项和.求证:2Tn+1<log2(an+3)
(I)n=1时,6a1=a12+3a1+2,且a1>1,解得a1=2.n≥2时,6Sn=an2+3an+2,6Sn-1=an-12+3an-1+2,两式相减得(an+an-1)(an-an-1-3)=0由此能求出an. (II)根据数列{bn}满足,可得,从而Tn=b1+b2+…+bn=,利用分析法证明.要证2Tn+1<log2(an+3),即证<log2(an+3),即证,构造函数,可得{cn}是单调递减数列,即可证出结论. (I)【解析】 n=1时,6a1=a12+3a1+2,且a1>1,解得a1=2. n≥2时,6Sn=an2+3an+2,6Sn-1=an-12+3an-1+2,两式相减得(an+an-1)(an-an-1-3)=0, ∵an+an-1>0, ∴an-an-1=3, ∴{an}为等差数列, ∵a1=2, ∴an=3n-1. (II)证明:∵数列{bn}满足, ∴ ∴Tn=b1+b2+…+bn= 要证2Tn+1<log2(an+3),即证<log2(an+3) 即证 即证 令, ∴ ∵cn>0,∴cn+1<cn, ∴{cn}是单调递减数列 ∴ ∴ 故2Tn+1<log2(an+3).
复制答案
考点分析:
相关试题推荐
己知双曲线C的方程为manfen5.com 满分网,若直线x-my-3=0截双曲线的一支所得弦长为5.
(Ⅰ)求m的值;
(Ⅱ)设过双曲线C上的一点P的直线与双曲线的两条渐近线分别交于点P1、P2,且点P分有向线段manfen5.com 满分网所成的比为λ(λ>0),当manfen5.com 满分网时,求manfen5.com 满分网(O为坐标原点)的值.
查看答案
如图,已知PO⊥平面ABCD,点O在AB上,EA∥PO,四边形ABCD是直角梯形,AB∥DC,且BC⊥AB,BC=CD=BO=PO,EA=AO=manfen5.com 满分网
(Ⅰ)求证:PE⊥平面PBC;
(Ⅱ)求二面角C-PB-D的大小;
(Ⅲ)在线段PE上是否存在一点M,使DM∥平面PBC,若存在求出点M;若不存在,说明理由.

manfen5.com 满分网 查看答案
甲、乙二人进行射击比赛.甲先射击,乙后射击,二人轮流进行.已知甲每次击中目标的概率为manfen5.com 满分网,乙每次击中目标的概率为manfen5.com 满分网,若某人射击时出现连续两次不中则被停止射击,或若两人均未出现连续不中,则各射击5次后比赛也停止.
(Ⅰ)求甲恰在第三次射击后停止比赛而乙尚未停止比赛的概率.
(Ⅱ)求甲停止比赛时,甲所进行的比赛次数ξ的数学期望.
查看答案
已知向量manfen5.com 满分网,且A为锐角.
(I)求角A的大小;
(Ⅱ)求函数manfen5.com 满分网的值域.
查看答案
设函数f(x)的定义域为D,若存在非零实数,使得对于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),则称f(x)为M上的l高调函数,现给出下列命题:
①函数manfen5.com 满分网为R上的1高调函数;
②函数f (x)=sin 2x为R上的高调函数;
③如果定义域是[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是[2,+∞);
④如果定义域为R的函教f (x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是[一1,1].
其中正确的命题是     (写出所有正确命题的序号). 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.