满分5 > 高中数学试题 >

已知定义在(0,+∞)上的两个函数处取得极值. (1)求a的值及函数g(x)的单...

已知定义在(0,+∞)上的两个函数manfen5.com 满分网处取得极值.
(1)求a的值及函数g(x)的单调区间;
(2)求证:当manfen5.com 满分网成立.
(3)把g(x)对应的曲线向上平移6个单位后得曲线C1,求C1与f(x)对应曲线C2的交点个数,并说明理由.
(1)先根据f'(1)=0求出a的值,然后求出g′(x),最后解g′(x)>0与g′(x)<0,即可求出函数g(x)的单调区间; (2)先判定2-lnx的符号,欲证,只需证明2x-xlnx<2+lnx,即只需证,记,然后利用导数研究函数的单调性求出函数F(x)的最小值即可证得结论; (3)由题意知,问题转化为在(0,+∞)上解的个数,然后利用导数研究函数的单调性,从而可判定解的个数. 【解析】 (1)∵f′(x)=2x-,∴f'(1)=2-a=0,∴a=2.…(2分) ∴.由,得x>1; 由,得0<x<1. ∴g(x)的单调递减区间是(0,1),单调递增区间是(1,+∞).…(4分) (2)∵1<x<e2, ∴0<lnx<2, ∴2-lnx>0. 欲证,只需证明2x-xlnx<2+lnx, 即只需证. 记, 则. 当x>1时,F'(x)>0, ∴F(x)在(1,+∞)上是增函数. ∴F(x)>F(1)=0, ∴F(x)>0,即. ∴.故结论成立.  …(8分) (3)由题意知. 问题转化为在(0,+∞)上解的个数.…(10分) =. 由G'(x)>0,得x>1;由G'(x)<0,得0<x<1. ∴G(x)在区间(1,+∞)上单调递增,在区间(0,1)上单调递减. 又G(1)=-4<0,所以 在(0,+∞)上有2个解. 即C1与f(x)对应曲线C2的交点个数是2.…(14分)
复制答案
考点分析:
相关试题推荐
已知各项均为正数的数列{an}的前n项和Sn满足S1>1,且6Sn=(an+1)(an+2),n∈N*
(I)求数列{an}的通项公式;
(II)设数列{bn}满足manfen5.com 满分网,记Tn为数列{bn}的前n项和.求证:2Tn+1<log2(an+3)
查看答案
己知双曲线C的方程为manfen5.com 满分网,若直线x-my-3=0截双曲线的一支所得弦长为5.
(Ⅰ)求m的值;
(Ⅱ)设过双曲线C上的一点P的直线与双曲线的两条渐近线分别交于点P1、P2,且点P分有向线段manfen5.com 满分网所成的比为λ(λ>0),当manfen5.com 满分网时,求manfen5.com 满分网(O为坐标原点)的值.
查看答案
如图,已知PO⊥平面ABCD,点O在AB上,EA∥PO,四边形ABCD是直角梯形,AB∥DC,且BC⊥AB,BC=CD=BO=PO,EA=AO=manfen5.com 满分网
(Ⅰ)求证:PE⊥平面PBC;
(Ⅱ)求二面角C-PB-D的大小;
(Ⅲ)在线段PE上是否存在一点M,使DM∥平面PBC,若存在求出点M;若不存在,说明理由.

manfen5.com 满分网 查看答案
甲、乙二人进行射击比赛.甲先射击,乙后射击,二人轮流进行.已知甲每次击中目标的概率为manfen5.com 满分网,乙每次击中目标的概率为manfen5.com 满分网,若某人射击时出现连续两次不中则被停止射击,或若两人均未出现连续不中,则各射击5次后比赛也停止.
(Ⅰ)求甲恰在第三次射击后停止比赛而乙尚未停止比赛的概率.
(Ⅱ)求甲停止比赛时,甲所进行的比赛次数ξ的数学期望.
查看答案
已知向量manfen5.com 满分网,且A为锐角.
(I)求角A的大小;
(Ⅱ)求函数manfen5.com 满分网的值域.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.