满分5 > 高中数学试题 >

(附加题-必做题) 四棱锥P-ABCD的底面ABCD是正方形,侧棱PD⊥底面AB...

manfen5.com 满分网(附加题-必做题)
四棱锥P-ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(I)证明PA∥平面BDE;
(Ⅱ)求二面角B-DE-C的平面角的余弦值;
(Ⅲ)在棱PB上是否存在点F,使PB⊥平面DEF?若存在,请求出F点的位置;若不存在,请说明理由.
(1)建立空间直角坐标系,根据直线所在的向量与平面的法向量相互垂直,并且直线不在平面内可得直线与平面平行. (2)分别求出两个平面的法向量,利用向量的有关运算计算出两个向量的夹角,进而得到二面角平面角的余弦值. (3)假设存在点F,则直线PB所在的向量与平面DEF的法向量平行,根据这个条件可得到一个方程,再根据有关知识判断方程的解的情况. 【解析】 (1)以D为坐标原点,分别以DA、DC、DP所在直线为x轴、y轴、z轴建立空间直角坐标系, 设PD=CD=2,则A(2,0,0),P(0,0,2),E(0,1,1),B(2,2,0), 所以=(2,0,-2),=(0,1,1),=(2,2,0). 设=(x,y,z)是平面BDE的一个法向量, 则由,得; 取=-1,则=(1,-1,1), ∵•=2-2=0, ∴⊥,又PA⊄平面BDE, ∴PA∥平面BDE. (2)由(1)知=(1,-1,1)是平面BDE的一个法向量,又==(2,0,0)是平面DEC的一个法向量. 设二面角B-DE-C的平面角为θ,由图可知θ=<,>, ∴cosθ=cos<,>===, 故二面角B-DE-C余弦值为. (3)∵=(2,2,-2),=(0,1,1), ∴•=0+2-2=0,∴PB⊥DE. 假设棱PB上存在点F,使PB⊥平面DEF,设=λ(0<λ<1), 则=(2λ,2λ,-2λ),=+=(2λ,2λ,2-2λ), 由•=0得4λ2+4λ2-2λ(2-2λ)=0, ∴λ=∈(0,1),此时PF=PB, 即在棱PB上存在点F,PF=PB,使得PB⊥平面DEF.
复制答案
考点分析:
相关试题推荐
已知实数a,b,c,d满足a+b+c+d=3,a2+2b2+3c2+6d2=5,求a的取值范围.
查看答案
(附加题-选做题)(坐标系与参数方程)
已知曲线C的参数方程为manfen5.com 满分网,α∈[0,2π),曲线D的极坐标方程为manfen5.com 满分网
(1)将曲线C的参数方程化为普通方程;
(2)曲线C与曲线D有无公共点?试说明理由.
查看答案
已知矩阵manfen5.com 满分网,点M(-1,-1),点N(1,1).
(1)求线段MN在矩阵A对应的变换作用下得到的线段M′N′的长度;
(2)求矩阵A的特征值与特征向量.
查看答案
(附加题-选做题)(几何证明选讲)
如图,圆O与圆O1外切于点P,一条外公切线分别切两圆于A、B两点,AC为圆O的直径,T为圆O1上任点,CT=AC.求证:CT为圆O1的切线,切点为T.

manfen5.com 满分网 查看答案
对任意x∈R,给定区间[k-manfen5.com 满分网,k+manfen5.com 满分网](k∈Z),设函数f(x)表示实数x与x的给定区间内整数之差的绝对值.
(1)写出f(x)的解析式;
(2)设函数g(x)=logamanfen5.com 满分网,(manfen5.com 满分网<a<1),试证明:当x>1时,f(x)>g(x);当0<x<1时,f(x)<g(x);
(3)求方程f(x)-logamanfen5.com 满分网=0的实根,(manfen5.com 满分网<a<1).
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.