满分5 > 高中数学试题 >

如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C...

manfen5.com 满分网如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.
(I)求证:AD∥EC;
(II)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.
(I)连接AB,根据弦切角等于所夹弧所对的圆周角得到∠BAC=∠D,又根据同弧所对的圆周角相等得到∠BAC=∠E,等量代换得到∠D=∠E,根据内错角相等得到两直线平行即可; (II)根据切割线定理得到PA2=PB•PD,求出PB的长,然后再根据相交弦定理得PA•PC=BP•PE,求出PE,再根据切割线定理得AD2=DB•DE=DB•(PB+PE),代入求出即可. 【解析】 (I)证明:连接AB, ∵AC是⊙O1的切线, ∴∠BAC=∠D, 又∵∠BAC=∠E, ∴∠D=∠E, ∴AD∥EC. (II)∵PA是⊙O1的切线,PD是⊙O1的割线, ∴PA2=PB•PD, ∴62=PB•(PB+9) ∴PB=3, 在⊙O2中由相交弦定理,得PA•PC=BP•PE, ∴PE=4, ∵AD是⊙O2的切线,DE是⊙O2的割线, ∴AD2=DB•DE=9×16, ∴AD=12
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网,F1、F2分别为椭圆c的左右焦点,点P在椭圆C上(不是顶点),△PF1F2内一点G满足manfen5.com 满分网,其中manfen5.com 满分网
(I)求椭圆C的离心率;
(Ⅱ)若椭圆C短轴长为2manfen5.com 满分网,过焦点F2的直线l与椭圆C相交于A、B两点(A、B不是左右顶点),若manfen5.com 满分网,求△F1AB面积.
查看答案
设函数manfen5.com 满分网的图象与直线12x+y-1=0相切于点(1,-11).
(I)求a,b的值;
(II)如果函数g(x)=f(x)+c有三个不同零点,求c的取值范围.
查看答案
如图,在三棱锥P-ABC中,PB⊥平面ABC,△ABC是直角三角形,∠ABC=90°,AB=BC=2,∠PAB=45°,点D、E、F分别为AC、AB、BC的中点.
(I)求证:EF⊥PD;
(Ⅱ)求三棱锥D-PEF的体积.

manfen5.com 满分网 查看答案
一个盒子中装有标有号码分别为1、2、3、5,且形状完全相同的4个小球,从盒子中有放回的先后取两个小球.
(I)写出这个事件的基本事件空间;
(Ⅱ)求“两次取出的小球号码相同”的概率;
(Ⅲ)求“取出的两个小球上的号码之和是6”的概率.
查看答案
已知数列1,3,6,…的各项是由一个等比数列{an}和一个等差数列{bn}的对应项相加而得到,其中等差数列的首项为0.
(I)求{an}与{b}的通项公式;
(Ⅱ)求数列{an+bn}的前n项和Sn
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.