满分5 > 高中数学试题 >

已知椭圆的右焦点恰好是抛物线C:y2=4x的焦点F,点A是椭圆E的右顶点.过点A...

已知椭圆manfen5.com 满分网的右焦点恰好是抛物线C:y2=4x的焦点F,点A是椭圆E的右顶点.过点A的直线l交抛物线C于M,N两点,满足OM⊥ON,其中O是坐标原点.
(1)求椭圆E的方程;
(2)过椭圆E的左顶点B作y轴平行线BQ,过点N作x轴平行线NQ,直线BQ与NQ相交于点Q.若△QMN是以MN为一条腰的等腰三角形,求直线MN的方程.
(1)根据抛物线方程求得焦点坐标,进而设直线l:x=a+my代入抛物线方程设M(x1,y1),N(x2,y2),根据韦达定理可求得y1+y2和y1y2,进而求得x1x2,进而根据OM⊥ON得进而求得a和b,则椭圆方程可得. (2)先看当QM为等腰△QMN的底边时,进而推断出O是线段MQ的中点,求得m;再看当QN为等腰△QMN的底边时,根据y1y2=-16,求得m,则直线方程可得. 【解析】 (1)F(1,0),∴a2-b2=1,A(a,0), 设直线l:x=a+my代入y2=4x中, 整理得y2-4my-4a=0.设M(x1,y1),N(x2,y2), 则, 又∵y12=4x1,y22=4x2, ∴, 由OM⊥ON得, 解得a=4或a=0(舍),得b2=15 所以椭圆E的方程为. (2)椭圆E的左顶点B(-4,0),所以点Q(-4,y2).易证M,O,Q三点共线. (I)当QM为等腰△QMN的底边时,由于ON⊥OM,∴O是线段MQ的中点, ∴,所以m=0,即直线MN的方程为x=4; (II)当QN为等腰△QMN的底边时, 又∵y1y2=-16, 解得,或 ∴, 所以直线MN的方程为,即; 综上,当△QMN为等腰三角形时,直线MN的方程为x=4或.
复制答案
考点分析:
相关试题推荐
有甲、乙两个工厂,甲厂位于一直线河岸的岸边A处,乙厂与甲厂在河的两侧,乙厂位于离河岸40km的B处,乙厂到河岸的垂足D与A相距50 km,两厂要在此岸边合建一个供水站C,从供水站到甲厂和乙厂的水管费用分别为3a元和5a元,问供水站C建在何处才能使水管费用最省?
查看答案
manfen5.com 满分网从某校参加2009年全国高中数学联赛预赛的450名同学中,随机抽取若干名同学,将他们的成绩制成频率分布表,下面给出了此表中部分数据.
(1)根据表中已知数据,你认为在①、②、③处的数值分别为__________________
(2)补全在区间[70,140]上的频率分布直方图;
(3)若成绩不低于110分的同学能参加决赛,那么可以估计该校大约有多少学生能参加决赛?

分组频数频率
[70,80)0.08
[80,90)
[90,100)0.36
[100,110)160.32
[110,120)0.08
[120,130)2
[130,140]0.02
合计

查看答案
如图,在三棱柱ABC-A1B1C1中,AC⊥BC,AB⊥BB1,AC=BC=BB1=2,D为AB的中点,且CD⊥DA1
①求证:BB1⊥平面ABC;
②求多面体DBC-A1B1C1的体积.

manfen5.com 满分网 查看答案
已知等差数列{an}满足a1=8,a5=0,数列{bn}的前n项和为manfen5.com 满分网
①求数列{an}和{bn}的通项公式;
②解不等式an<bn
查看答案
在正三棱锥P-ABC中,M,N分别是PB,PC的中点,若截面AMN⊥侧面PBC,则此棱锥截面与底面所成的二面角正弦值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.