满分5 > 高中数学试题 >

如图所示,已知PA与⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、BC相...

如图所示,已知PA与⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF•EC.
(Ⅰ)求证:∠P=∠EDF;
(Ⅱ)求证:CE•EB=EF•EP.

manfen5.com 满分网
(1)根据所给的乘积式和对应角相等,得到两个三角形相似,由相似得到对应角相等,再根据两直线平行内错角相等,角进行等量代换,得到要证的结论. (2)根据第一问所得的结果和对顶角相等,得到两个三角形相似,根据三角形相似得到对应线段成比例,把比例式转化为乘积式,再根据相交弦定理得到比例式,等量代换得到结果. 证明:(1)∵DE2=EF•EC, ∴DE:CE=EF:ED. ∵∠DEF是公共角, ∴△DEF∽△CED. ∴∠EDF=∠C. ∵CD∥AP, ∴∠C=∠P. ∴∠P=∠EDF. (2)∵∠P=∠EDF,∠DEF=∠PEA, ∴△DEF∽△PEA. ∴DE:PE=EF:EA. 即EF•EP=DE•EA. ∵弦AD、BC相交于点E, ∴DE•EA=CE•EB. ∴CE•EB=EF•EP.
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网的右焦点恰好是抛物线C:y2=4x的焦点F,点A是椭圆E的右顶点.过点A的直线l交抛物线C于M,N两点,满足OM⊥ON,其中O是坐标原点.
(1)求椭圆E的方程;
(2)过椭圆E的左顶点B作y轴平行线BQ,过点N作x轴平行线NQ,直线BQ与NQ相交于点Q.若△QMN是以MN为一条腰的等腰三角形,求直线MN的方程.
查看答案
有甲、乙两个工厂,甲厂位于一直线河岸的岸边A处,乙厂与甲厂在河的两侧,乙厂位于离河岸40km的B处,乙厂到河岸的垂足D与A相距50 km,两厂要在此岸边合建一个供水站C,从供水站到甲厂和乙厂的水管费用分别为3a元和5a元,问供水站C建在何处才能使水管费用最省?
查看答案
manfen5.com 满分网从某校参加2009年全国高中数学联赛预赛的450名同学中,随机抽取若干名同学,将他们的成绩制成频率分布表,下面给出了此表中部分数据.
(1)根据表中已知数据,你认为在①、②、③处的数值分别为__________________
(2)补全在区间[70,140]上的频率分布直方图;
(3)若成绩不低于110分的同学能参加决赛,那么可以估计该校大约有多少学生能参加决赛?

分组频数频率
[70,80)0.08
[80,90)
[90,100)0.36
[100,110)160.32
[110,120)0.08
[120,130)2
[130,140]0.02
合计

查看答案
如图,在三棱柱ABC-A1B1C1中,AC⊥BC,AB⊥BB1,AC=BC=BB1=2,D为AB的中点,且CD⊥DA1
①求证:BB1⊥平面ABC;
②求多面体DBC-A1B1C1的体积.

manfen5.com 满分网 查看答案
已知等差数列{an}满足a1=8,a5=0,数列{bn}的前n项和为manfen5.com 满分网
①求数列{an}和{bn}的通项公式;
②解不等式an<bn
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.