满分5 > 高中数学试题 >

如图所示,已知PA是⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、BC相...

如图所示,已知PA是⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF•EC.
(1)求证:A、P、D、F四点共圆;
(2)若AE•ED=24,DE=EB=4,求PA的长.

manfen5.com 满分网
(1)由已知中DE2=EF•EC,我们易证明,△DEF~△CED,进而结合CD∥AP,结合相似三角形性质,得到∠P=∠EDF,由圆内接四边形判定定理得到A、P、D、F四点共圆; (2)由(1)中的结论,结合相交弦定理得PE•EF=AE•ED=24,结合已知条件,可求出PB,PC的长,代入切割线定理,即可求出PA的长. 解(1)证明:∵DE2=EF•EC,∴, 又∠DEF=∠CED,∴△DEF~△CED,∠EDF=∠ECD, 又∵CD∥PA,∴∠ECD=∠P 故∠P=∠EDF,所以A,P,D,F四点共圆; (2)由(Ⅰ)及相交弦定理得PE•EF=AE•ED=24, 又BE•EC=AE•ED=24,∴EC=6,EF=,PE=9,PB=5,PC=PB+BE+EC=15, 由切割线定理得PA2=PB•PC=5×15=75, 所以PA=5为所求.
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的左焦点F(-c,0)是长轴的一个四等分点,点A、B分别为椭圆的左、右顶点,过点F且不与y轴垂直的直线l交椭圆于C、D两点,记直线AD、BC的斜率分别为k1,k2
(1)当点D到两焦点的距离之和为4,直线l⊥x轴时,求k1:k2的值;
(2)求k1:k2的值.
查看答案
设函数f(x)=x3+ax2-a2x+5(a>0)
(1)当函数f(x)有两个零点时,求a的值;
(2)若a∈[3,6],当x∈[-4,4]时,求函数f(x)的最大值.
查看答案
如图,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC,侧面PBC⊥底面ABCD,O是BC的中点.
(1)求证:DC∥平面PAB;
(2)求证:PO⊥平面ABCD;
(3)求证:PA⊥BD.

manfen5.com 满分网 查看答案
某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据
x681012
y2356
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程manfen5.com 满分网=manfen5.com 满分网x+manfen5.com 满分网
(3)试根据(II)求出的线性回归方程,预测记忆力为9的同学的判断力.
(相关公式:manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网-manfen5.com 满分网x)

manfen5.com 满分网 查看答案
在△ABC中,a、b、c分别为内角A、B、C的对边,且b2+c2-a2=bc.
(1)求角A 的大小;
(2)设函数manfen5.com 满分网时,若manfen5.com 满分网,求b的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.