如图,已知椭圆
的离心率为
,以该椭圆上的点和椭圆的左、右焦点F
1,F
2为顶点的三角形的周长为
.一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF
1和PF
2与椭圆的交点分别为A、B和C、D.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线PF
1、PF
2的斜率分别为k
1、k
2,证明k
1•k
2=1;
(Ⅲ)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.
考点分析:
相关试题推荐
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=
,若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求k的值及f(x)的表达式.
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
查看答案
在△ABC中,a,b,c分别为角A,B,C的对边,且满足
.
(1)求角A大小;
(2)若b+c=3,求△ABC的面积的最大值.
查看答案
在直三棱柱ABC-A
1B
1C
1中,AB=AC=1,∠BAC=90°,且异面直线A
1B与B
1C
1所成的角等于60°,设AA
1=a.
(1)求a的值;
(2)求直线B
1C
1到平面A
1BC的距离.
查看答案
已知数据x
1,x
2,x
3,…,x
n是上海普通职工n(n≥3,n∈N
*)个人的年收入,设这n个数据的中位数为x,平均数为y,方差为z,如果再加上世界首富的年收入x
n+1,则这n+1个数据中,下列说法正确的是( )
A.年收入平均数大大增大,中位数一定变大,方差可能不变
B.年收入平均数大大增大,中位数可能不变,方差变大
C.年收入平均数大大增大,中位数可能不变,方差也不变
D.年收入平均数可能不变,中位数可能不变,方差可能不变
查看答案
如果一个水平放置的图形的斜二测直观图是一个底面为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )
A.2+
B.
C.
D.1+
查看答案