满分5 > 高中数学试题 >

lg25+lg2•lg50+(lg2)2= .

lg25+lg2•lg50+(lg2)2=   
我们对后两项提取公因式lg2,根据对数的运算性质:lg25=lg(52)=2lg5,lg50+lg2=lg100,我们可将原式化为2(lg5+lg2)形式,进而得到答案. 【解析】 lg25+lg2•lg50+(lg2)2 =lg25+lg2•(lg50+lg2) =lg(52)+lg2•lg(50•2) =lg(52)+lg2•lg(100) =2(lg5+lg2) =2 故答案为:2
复制答案
考点分析:
相关试题推荐
设函数f(x)=|x-1|+|x-2|.
(1)画出函数y=f(x)的图象;
(2)若不等式|a+b|+|a-b|≥|a|f(x),(a≠0,a、b∈R)恒成立,求实数x的范围.
查看答案
已知直线l的参数方程为manfen5.com 满分网,(t为参数,α为倾斜角,且manfen5.com 满分网)与曲线manfen5.com 满分网=1交于A,B两点.
(Ⅰ)写出直线l的一般方程及直线l通过的定点P的坐标;
(Ⅱ)求|PA||PB|的最大值.
查看答案
如图,C点在圆O直径BE的延长线上,CA切圆O于A点,∠ACB平分线DC交AE于点F,交AB于D点.
(I)求∠ADF的度数;
(II)若AB=AC,求AC:BC.

manfen5.com 满分网 查看答案
manfen5.com 满分网
(Ⅰ)判断函数f(x)的单调性;
(Ⅱ)是否存在实数a,使得关于x的不等式ln(1+x)<ax在(0,+∞)上恒成立,若存在,求出a的取值范围,若不存在,试说明理由;
(Ⅲ)求证:manfen5.com 满分网(其中e为自然对数的底数).
查看答案
已知两点F1(-2,0),F2(2,0),曲线C上的动点M满足|MF1|+|MF2|=2|F1F2|,直线MF2与曲线C交于另一点P.
(Ⅰ)求曲线C的方程;
(Ⅱ)设N(-4,0),若manfen5.com 满分网=3:2,求直线MN的方程.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.