做高AE,不妨设E在CD上,设AE=h,CE=x,CD=p,BD=q,则DE=p-x,BE=p+q-x,根据勾股定理可分别表示出AD2和AB2,进而求得的表达式,根据题设等式可知pq=BD•CD,进而化简整理求得x==,推断出ABC为等腰三角形.进而根据顶角求得B.
【解析】
做高AE,不妨设E在CD上,设AE=h,CE=x,CD=p,BD=q,则DE=p-x,BE=p+q-x,
则AD2=AE2+DE2=h2+(p-x)2,
AB2=AE2+BE2=h2+(p+q-x)2,
AB2-AD2=(p+q-x)2-(p-x)2=q(q+2p-2x),
即pq=BD•CD=q(q+2p-2x),
q≠0,所以 p=q+2p-2x,
x==,
即E为BC中点,于是ABC为等腰三角形.
顶角为,则底角B=
故答案为.