满分5 > 高中数学试题 >

在△ABC中,角A,B,C的对边分别为a,b,c,且acosC,bcosB,cc...

在△ABC中,角A,B,C的对边分别为a,b,c,且acosC,bcosB,ccosA成等差数列,
(Ⅰ)求B的值;
(Ⅱ)求2sin2A+cos(A-C)的范围.
(Ⅰ)根据等差数列的性质可知acosC+ccosA=2bcosB,利用正弦定理把边转化成角的正弦,化简整理得sinB=2sinBcosB,求得cosB,进而求得B. (Ⅱ)先利用二倍角公式对原式进行化简整理,进而根据A的范围和正弦函数的单调性求得2sin2A+cos(A-C)的范围. 【解析】 (Ⅰ)∵acosC,bcosB,ccosA成等差数列, ∴acosC+ccosA=2bcosB, 由正弦定理得,a=2RsinA,b=2RsinB,c=2RsinC, 代入得:2RsinAcosC+2RcosAsinC=4RsinBcosB, 即:sin(A+C)=sinB, ∴sinB=2sinBcosB, 又在△ABC中,sinB≠0, ∴, ∵0<B<π, ∴; (Ⅱ)∵, ∴ ∴ = =, ∵, ∴ ∴2sin2A+cos(A-C)的范围是.
复制答案
考点分析:
相关试题推荐
给定两个长度为1的平面向量manfen5.com 满分网manfen5.com 满分网,它们的夹角为120°.
(1)求|manfen5.com 满分网+manfen5.com 满分网|;
(2)如图所示,点C在以O为圆心的圆弧manfen5.com 满分网上变动.若manfen5.com 满分网=xmanfen5.com 满分网+ymanfen5.com 满分网,其中x,y∈R,求x+y的最大值?

manfen5.com 满分网 查看答案
如图所示,已知ABCD是直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,PA⊥平面ABCD.
(1)证明:PC⊥CD;
(2)若E是PA的中点,证明:BE∥平面PCD;
(3)若PA=3,求三棱锥B-PCD的体积.

manfen5.com 满分网 查看答案
下列说法:
①当x>0且x≠1时,有lnx+manfen5.com 满分网≥2;
②函数y=ax的图象可以由函数y=2ax(其中a>0且a≠1)平移得到;
③△ABC中,A>B是sinA>sinB成立的充要条件;
④已知Sn是等差数列{an}的前n项和,若S7>S5,则S9>S3
⑤函数y=f(1+x)与函数y=f(1-x)的图象关于直线x=1对称.
其中正确的命题的序号为    查看答案
在直角坐标系中,如果两点A(a,b),B(-a,-b)函数y=f(x)的图象上,那么称[A,B]为函数f(x)的一组关于原点的中心对称点([A,B]与[B,A]看作一组).函数g(x)=manfen5.com 满分网关于原点的中心对称点的组数为    查看答案
,设{an}是正项数列,其前n项和Sn满足:4Sn=(an-1)(an+3),则数列{an}的通项公式an=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.