满分5 > 高中数学试题 >

设数列{an}的各项都是正数,且对任意n∈N+,都有a13+a23+a33+…+...

设数列{an}的各项都是正数,且对任意n∈N+,都有a13+a23+a33+…+an3=Sn2,其中Sn为数列{an}的前n项和.
(Ⅰ)求证:an2=2Sn-an
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设bn=3n+(-1)n-1λ•2an(λ为非零整数,n∈N*)试确定λ的值,使得对任意n∈N*,都有bn+1>bn成立.
(Ⅰ)令n=1代入a13+a23+a33+…+an3=Sn2,可得a1的值,然后推出Sn-12的表达式,与Sn2相减可得an2=2Sn-an,从而求证; (Ⅱ)由(Ⅰ)得an2=2Sn-an利用递推公式,得an-12的表达式,从而可得数列an是首项为1,公差为1的等差数列. (Ⅲ)第一步要求出bn+1-bn的表达式,然后再进行分类讨论,n为奇偶的情况确定λ的范围; 【解析】 (Ⅰ)由已知得,当n=1时,a13=S12=a12, 又∵an>0,∴a1=1 当n≥2时,a13+a23++an3=Sn2① a13+a23++an-13=Sn-12② 由①-②得,an3=Sn2-Sn-12=(Sn-Sn-1)(Sn+Sn-1)=an(Sn+Sn-1) ∴an2=Sn+Sn-1=2Sn-an(n≥2) 显然当n=1时,a1=1适合上式. 故an2=2Sn-an(n∈N*) (Ⅱ)由(I)得,an2=2Sn-an③ an-12=2Sn-1-an-1(n≥2)④ 由③-④得,an2-an-12=2Sn-2Sn-1-an+an-1=an+an-1 ∵an+an-1>0∴an-an-1=1(n≥2) 故数列an是首项为1,公差为1的等差数列. ∴an=n(n∈N*) (III)∵an=n(n∈N*),∴bn=3n+(-1)n-1λ•2n ∴bn+1-bn=3n+1-3n+(-1)nλ•2n+1-(-1)n-1λ•2n=2×3n-3λ•(-1)n-1•2n 要使bn-1>bn恒成立,只须(-1)n-1 λ<n-1 (1)当n为奇数时,即λ<恒成立, 又的最小值为1,∴λ<1 (2)当为偶数时,即λ>恒成立, 又-的最大值为-, ∴λ>-,∴由(1)(2)得-<λ<1, 又λ=0且为整数,∴λ=-1对所有n∈N+,都有bn+1>bn成立.
复制答案
考点分析:
相关试题推荐
已知f(x)=lnx-x2+bx+3.
(Ⅰ)若函数f(x)在点(2,y)处的切线与直线2x+y+2=0垂直,求函数f(x)在区间[1,3]上的最小值;
(Ⅱ)若f(x)在区间[1,m]上单调,求b的取值范围.
查看答案
已知可行域manfen5.com 满分网的外接圆C与x轴交于点A1、A2,椭圆C1以线段A1A2为长轴,离心率manfen5.com 满分网
(1)求圆C及椭圆C1的方程;
(2)设椭圆C1的右焦点为F,点P为圆C上异于A1、A2的动点,过原点O作直线PF的垂线交直线manfen5.com 满分网于点Q,判断直线PQ与圆C的位置关系,并给出证明.
查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,且acosC,bcosB,ccosA成等差数列,
(Ⅰ)求B的值;
(Ⅱ)求2sin2A+cos(A-C)的范围.
查看答案
给定两个长度为1的平面向量manfen5.com 满分网manfen5.com 满分网,它们的夹角为120°.
(1)求|manfen5.com 满分网+manfen5.com 满分网|;
(2)如图所示,点C在以O为圆心的圆弧manfen5.com 满分网上变动.若manfen5.com 满分网=xmanfen5.com 满分网+ymanfen5.com 满分网,其中x,y∈R,求x+y的最大值?

manfen5.com 满分网 查看答案
如图所示,已知ABCD是直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,PA⊥平面ABCD.
(1)证明:PC⊥CD;
(2)若E是PA的中点,证明:BE∥平面PCD;
(3)若PA=3,求三棱锥B-PCD的体积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.