满分5 > 高中数学试题 >

已知函数f(x)=x2+|x-a|+1,a∈R. (1)试判断f(x)的奇偶性;...

已知函数f(x)=x2+|x-a|+1,a∈R.
(1)试判断f(x)的奇偶性;
(2)若-manfen5.com 满分网≤a≤manfen5.com 满分网,求f(x)的最小值.
(1)由于函数解析式为f(x)=x2+|x-a|+1,a∈R,所以利用解析式及判断函数的奇偶性的方法,对a进行分类讨论即可; (2)由于-≤a≤,求f(x)的最小值,且解析式含有绝对值,所以利用对a的讨论把解析式具体化,之后利用二次函数性质求出定义域下的值域即可. 【解析】 (1)当a=0时,函数f(-x)=(-x)2+|-x|+1=f(x), 此时,f(x)为偶函数. 当a≠0时,f(a)=a2+1,f(-a)=a2+2|a|+1, f(a)≠f(-a),f(a)≠-f(-a),此时,f(x)为非奇非偶函数. (2)当x≤a时, f(x)= ∵,故函数f(x)在(-∞,a]上单调递减. 从而函数f(x)在(-∞,a]上的最小值为f(a)=a2+1 当x≥a时,函数, ∵ 故函数f(x)在[a,+∞)上单调递增,从而函数f(x)在[a,+∞)上的最小值为f(a) =a2+1. 综上得,当-≤a≤时,函数f(x)的最小值为a2+1.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ax2-2ax+2+b(a≠0),在区间[2,3]上有最大值5,最小值2.
(1)求a,b的值;
(2)若b<1,g(x)=f(x)-(2m)•x在[2,4]上单调,求m的取值范围.
查看答案
已知A={x|3≤x<7},(B={x|2<x<10},C={x|x<a},全集为实数集R.
(1)求A∪B,(∁RA)∩B;
(2)如果A∩C≠∅,求a的取值范围.
查看答案
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数y=f(x)的导数y=f′(x)的导数,若方程f″(x)=0有实数解x,则称点(x,f(x))为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”请你将这一发现为条件,求
(1)函数f(x)=x3-3x2+3x对称中心为   
(2)若函数g(x)=manfen5.com 满分网x3-manfen5.com 满分网x2+3x-manfen5.com 满分网+manfen5.com 满分网,则g(manfen5.com 满分网)+g(manfen5.com 满分网)+g(manfen5.com 满分网)+g(manfen5.com 满分网)+…+g(manfen5.com 满分网)=    查看答案
已知函数f(x)=ex-2x+a有零点,则a的取值范围是    查看答案
定义:F(x,y)=yx(x>0,y>0),已知数列{an}满足:an=manfen5.com 满分网(n∈N*),若对任意正整数n,都有an≥ak(k∈N*)成立,则ak的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.