满分5 > 高中数学试题 >

已知函数f(x)=ex-k-x,(x∈R). (1)当k=0时,若函数的定义域是...

已知函数f(x)=ex-k-x,(x∈R).
(1)当k=0时,若函数manfen5.com 满分网的定义域是R,求实数m的取值范围;
(2)试判断当k>1时,函数f(x)在(k,2k)内是否存在零点.
(1)根据分式函数定义域为R,则使分母不取不到0即可,转化成研究f(x)+m的最小值大于零,解出m即可. (2)先研究函数在(k,2k)上的单调性,然后求f(k)与f(2k)并判定函数值的符号,根据零点存在性定理可得结论. 【解析】 (1)当k=0时,f(x)=ex-x,f′(x)=ex-1 ∴f(x)在(-∞,0)上单调减,在[0,+∞)上单调增. ∴f(x)min=f(0)=1,(5分)∵∀x∈R,f(x)≥1⇔f(x)-1≥0成立,∴m>-1(17分) (2)当k>1时,f′(x)=ex-k-1>0,在(k,2k)上恒成立.(9分) ∴f(x)在(k,2k)上单调增.(且连续) 且f(k)=ek-k-k=1-k<0,(10分) f(2k)=e2k-k-2k=ek-2k∵f′(2k)=ek-2>0,f(x)在k>1时单调增, ∴f(2k)>e-2>0(13分) ∴由零点存在定理知,函数f(x)在(k,2k)内存在零点.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x2+|x-a|+1,a∈R.
(1)试判断f(x)的奇偶性;
(2)若-manfen5.com 满分网≤a≤manfen5.com 满分网,求f(x)的最小值.
查看答案
设函数f(x)=kax-a-x(a>0且a≠1)是定义域为R的奇函数.
(1)若f(1)>0,试求不等式f(x2+2x)+f(x-4)>0的解集;
(2)若f(1)=manfen5.com 满分网,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,求m的值.
查看答案
设集合A={x|-2≤x≤3},B为函数y=lg(kx2+4x+k+3)的定义域,当B⊆A时,求实数k的取值范围.
查看答案
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数y=f(x)的导数y=f′(x)的导数,若方程f″(x)=0有实数解x,则称点(x,f(x))为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”请你将这一发现为条件,求
(1)函数f(x)=x3-3x2+3x对称中心为   
(2)若函数g(x)=manfen5.com 满分网x3-manfen5.com 满分网x2+3x-manfen5.com 满分网+manfen5.com 满分网,则g(manfen5.com 满分网)+g(manfen5.com 满分网)+g(manfen5.com 满分网)+g(manfen5.com 满分网)+…+g(manfen5.com 满分网)=    查看答案
若函数f(x)=2x2-lnx在其定义域内的一个子区间(k-1,k+1)内不是单调函数,则实数k的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.