满分5 > 高中数学试题 >

已知函数f(x)=-x2+ax+b2-b+1(a∈R,b∈R),对任意实数x都有...

已知函数f(x)=-x2+ax+b2-b+1(a∈R,b∈R),对任意实数x都有f(1-x)=f(1+x)成立,若当x∈[-1,1]时,f(x)>0恒成立,则b的取值范围是   
先根据条件“对任意实数x都有f(1-x)=f(1+x)成立”得到对称轴,求出a,再研究函数f(x)在[-1,1]上的单调性,求出函数的最小值,使最小值大于零即可. 【解析】 ∵对任意实数x都有f(1-x)=f(1+x)成立 ∴函数f(x)的对称轴为x=1=,解得a=2 ∵函数f(x)的对称轴为x=1,开口向下 ∴函数f(x)在[-1,1]上是单调递增函数, 而f(x)>0恒成立,f(x)min=f(-1)=b2-b-2>0 解得b<-1或b>2, 故答案为b<-1或b>2
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网manfen5.com 满分网,给出以下四个命题:
①f(x)的定义域为(0,+∞);
②f(x)的值域为[-1,+∞);
③f(x)是奇函数;
④f(x)在(0,1)上单调递增.其中所有真命题的序号是    查看答案
若方程x+log4x=7的解所在区间是(n,n+1)(n∈N*),则n=    查看答案
函数manfen5.com 满分网的单调递减区间是    查看答案
任意两正整数m、n之间定义某种运算⊕,m⊕n=manfen5.com 满分网,则集合M={(a,b)|a⊕b=36,a、b∈N+}
中元素的个数是    查看答案
已知A={x|x-1>a2},B={x|x-4<2a},若A∩B≠∅,则实数a的取值范围是    查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.