设函数f(x)=-x
3+ax
2+a
2x+1(x∈R),其中a∈R.
(Ⅰ)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)当a≠0时,求函数f(x)的极大值和极小值;
(Ⅲ)当a=2时,是否存在函数y=f(x)图象上两点以及函数y=f'(x)图象上两点,使得以这四点为顶点的四边形ABCD满足如下条件:①四边形ABCD是平行四边形;②AB⊥x轴;③|AB|=4.若存在,指出四边形ABCD的个数;若不存在,说明理由.
考点分析:
相关试题推荐
国家助学贷款是由财政贴息的信用贷款,旨在帮助高校家庭经济困难学生支付在校学习期间所需的学费、住宿费及生活费.每一年度申请总额不超过6000元.某大学2010届毕业生凌霄在本科期间共申请了24000元助学贷款,并承诺在毕业后3年内(按36个月计)全部还清.签约的单位提供的工资标准为第一年内每月1500元,第13个月开始,每月工资比前一个月增加5%直到4000元.凌霄同学计划前12个月每个月还款额为500,第13个月开始,每月还款额比上一月多x元.
(Ⅰ)若凌霄恰好在第36个月(即毕业后三年)还清贷款,求x的值;
(Ⅱ)当x=50时,凌霄同学将在第几个月还清最后一笔贷款?他当月工资的余额是否能满足每月3000元的基本生活费?
(参考数据:1.05
18=2.406,1.05
19=2.526,1.05
20=2.653,1.05
21=2.786)
查看答案
已知直三棱柱ABC-A
1B
1C
1中,AB=AC,D为BC中点,E为CC
1中点,侧面BCC
1B
1为正方形.
(1)证明:A
1C∥平面AB
1D;
(2)证明:BE⊥AB
1;
(3)设∠BAC=θ,若
,求
的最大值.
查看答案
已知椭圆
(a>b>0)的上顶点坐标为
,离心率为
.(Ⅰ)求椭圆C的方程;(Ⅱ)设P为椭圆上一点,A为椭圆左顶点,F为椭圆右焦点,求
的取值范围.
查看答案
某种产品的广告费支出x与销售额y(单位:万元)之间有如下对应数据:
(Ⅰ)求回归直线方程;
(Ⅱ)试预测广告费支出为10万元时,销售额多大?
(Ⅲ)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.
查看答案
已知向量
,
,若
.
(1) 求函数f(x)的最小正周期;
(2) 已知△ABC的三内角A、B、C的对边分别为a、b、c,且
(C为锐角),2sinA=sinB,求C、a、b的值.
查看答案