满分5 > 高中数学试题 >

已知f(x)=. (I)求f(x)的周期,并求x∈(0,π)时的单调增区间; (...

已知f(x)=manfen5.com 满分网
(I)求f(x)的周期,并求x∈(0,π)时的单调增区间;
(II)在△ABC中,a、b、分别是角A,B,C所对的边,若manfen5.com 满分网,且manfen5.com 满分网,求manfen5.com 满分网的最大值.
(Ⅰ)将函数解析式第二项分子利用二倍角的正弦函数公式化简,约分后两项提取4,利用特殊角的三角函数值及两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式即可求出函数的周期,根据正弦函数的增区间列出关于x的不等式,求出不等式的解集得到x的范围,找出与已知x的范围的公共部分,即可得到f(x)的单调增区间; (II)由A的度数求出sinA及cosA的值,再由a的值,利用正弦定理表示出c与b,然后利用平面向量的数量积运算法则化简所求的式子,将表示出的c与b代入,并将sinA,cosA及a的值代入,整理后根据A的度数,求出B+C的度数,用B表示出C,代入化简后的式子中,利用两角和与差的正弦函数公式及特殊角的三角函数值化简,再利用二倍角的正弦、余弦函数公式化简,最后利用两角和与差的正弦函数公式化为一个角的正弦函数,由正弦函数的值域,即可得到所求式子的最大值. 【解析】 (Ⅰ)f(x)=2sinx+2cosx=4sin(x+),…(2分) ∵ω=1,∴T=2π, 令2kπ-≤x+≤2kπ+(k∈Z),解得:kπ-≤x≤kπ+(k∈Z), 当k=0时,-≤x≤;当k=1时,≤x≤, ∵x∈(0,π), 则f(x)的单调增区间为(0,]∪[,π);…(6分) (Ⅱ)∵A=,a=, ∴由正弦定理=得:c=,同理可得b=, ∵sinA=,cosA=,a=,C=-B, ∴•=cbcosA=•cosA=2sinBsin(-B) =sinBcosB+sin2B=sin2B+(1-cos2B)=+sin(2B-), ∴当2B-=,即B=时,•最大值为.…(14分)
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网=1(a>b>0)的离心率是manfen5.com 满分网,过椭圆上一点M作直线MA,MB交椭圆于A,B两点,且斜率分别为k1,k2,若点A,B关于原点对称,则k1•k2的值为    查看答案
用红、黄、蓝三种颜色之一去涂图中标号为1,2,…,9的9个小正方形(如下表),使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且标号为“1、5、9”的小正方形涂相同的颜色,则符合条件的所有涂法共有    种.
123
456
789
查看答案
已知两个等比数列{an},{bn}满足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3,若数列{an}唯一,则a=    查看答案
已知在平面直角坐标系中,A(-2,0),B(1,3),O为原点,且manfen5.com 满分网,(其中α+β=1,α,β均为实数),若N(1,0),则manfen5.com 满分网的最小值是    查看答案
下表结出一个“直角三角形数阵”
manfen5.com 满分网
manfen5.com 满分网
manfen5.com 满分网

满足每一列成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第i行第j列的数为aij(i≥j,i,j∈N+),则a83等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.