满分5 > 高中数学试题 >

如图已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,...

如图已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E,F分别为棱BC,AD的中点.
(1)若PD=1,求异面直线PB和DE所成角的大小.
(2)若二面角P-BF-C的余弦值为manfen5.com 满分网,求四棱锥P-ABCD的体积.

manfen5.com 满分网
(1)根据一对对边平行且相等,得到一个四边形是平行四边形,根据平行四边形对边平行,把两条异面直线所成的角表示出来,放到△PBF中,利用余弦定理求出角的余弦值. (2)以D为原点,射线DA,DC,DP分别为x,y,z轴建立空间直角坐标系,设出线段的长,根据条件中所给的两个平面的二面角的值,求出设出的a的值,再求出四棱锥的体积. 【解析】 (1)E,F分别为棱BC,AD的中点,ABCD是边长为2的正方形 ∴DF∥BE且DF=BE ∴DFBE为平行四边形 ∴DE∥BF ∠PBF是PB与DE的所成角 △PBF中,BF=,PF=,PB=3 ∴ ∴异面直线PB和DE所成角的大小为 (2)如图,以D为原点,射线DA,DC,DP分别为x,y,z轴建立空间直角坐标系.设PD=a, 可得如下点的坐标: P(0,0,a),F(1,0,0),B(2,2,0) 则有: 因为PD⊥底面ABCD,所以平面ABCD的 一个法向量为m=(0,0,1) 设平面PFB的一个法向量为n=(x,y,z),则可得即 令x=1,得,所以 由已知,二面角P-BF-C的余弦值为,所以得: 解得a=2. 因为PD是四棱锥P-ABCD的高, ∴其体积为
复制答案
考点分析:
相关试题推荐
数列{an}的首项a1=1,前n项和为Sn,满足关系3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4…).
(I)设数列{an}的公比为f(t),作数列{bn},使b1=1,manfen5.com 满分网(n=2,3,4…).求bn
(II)求Tn=(b1b2-b2b3)+(b3b4-b4b5)+…+(b2n-1b2n-b2nb2n+1)的值.
查看答案
已知f(x)=manfen5.com 满分网
(I)求f(x)的周期,并求x∈(0,π)时的单调增区间;
(II)在△ABC中,a、b、分别是角A,B,C所对的边,若manfen5.com 满分网,且manfen5.com 满分网,求manfen5.com 满分网的最大值.
查看答案
已知椭圆manfen5.com 满分网=1(a>b>0)的离心率是manfen5.com 满分网,过椭圆上一点M作直线MA,MB交椭圆于A,B两点,且斜率分别为k1,k2,若点A,B关于原点对称,则k1•k2的值为    查看答案
用红、黄、蓝三种颜色之一去涂图中标号为1,2,…,9的9个小正方形(如下表),使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且标号为“1、5、9”的小正方形涂相同的颜色,则符合条件的所有涂法共有    种.
123
456
789
查看答案
已知两个等比数列{an},{bn}满足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3,若数列{an}唯一,则a=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.