满分5 > 高中数学试题 >

已知函数(a>0,a≠1), (1)若a>1,且关于x的方程f(x)=m有两个不...

已知函数manfen5.com 满分网(a>0,a≠1),
(1)若a>1,且关于x的方程f(x)=m有两个不同的正数解,求实数m的取值范围;
(2)设函数g(x)=f(-x),x∈[-2,+∞),g(x)满足如下性质:若存在最大(小)值,则最大(小)值与a无关.试求a的取值范围.
(1)令ax=t,将“方程f(x)=m有两个不同的正数解”转化为:“关于t的方程有相异的且均大于1的两根”,即关于t的方程t2-mt+2=0有相异的且均大于1的两根,求解. (2)根据题意有g(x)=a|x|+2ax,x∈[-2,+∞),根据指数函数,分①当a>1时,②当0<a<1时,两种情况分析,每种情况下,根据绝对值,再按照x≥0时和-2≤x<0两种情况讨论.最后综合取并集. 【解析】 (1)令ax=t,x>0, ∵a>1,所以t>1, ∴关于x的方程f(x)=m有两个不同的正数解 转化为:方程有相异的且均大于1的两根, ∴ 解得, 故实数m的取值范围是. (2)g(x)=a|x|+2ax,x∈[-2,+∞) ①当a>1时, x≥0时,ax≥1,g(x)=3ax,所以g(x)∈[3,+∞), -2≤x<0时,,g(x)=a-x+2ax,所以 ⅰ当即时,对∀x∈(-2,0),g′(x)>0,所以g(x)在[-2,0)上递增, 所以, 综上:g(x)有最小值为与a有关,不符合(10分) ⅱ当即时,由g′(x)=0得, 且当时,g′(x)<0, 当时,g′(x)>0, 所以g(x)在上递减,在上递增, 所以=, 综上:g(x)有最小值为与a无关,符合要求. ②当0<a<1时, a)x≥0时,0<ax≤1,g(x)=3ax,所以g(x)∈(0,3] b)-2≤x<0时,,g(x)=a-x+2ax, 所以<0,g(x)在[-2,0)上递减, 所以, 综上:a)b)g(x)有最大值为与a有关,不符合 综上所述,实数a的取值范围是.
复制答案
考点分析:
相关试题推荐
以F1(0,-1),F2(0,1)为焦点的椭圆C过点manfen5.com 满分网
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点manfen5.com 满分网的动直线l交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,请说明理由.
查看答案
如图已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E,F分别为棱BC,AD的中点.
(1)若PD=1,求异面直线PB和DE所成角的大小.
(2)若二面角P-BF-C的余弦值为manfen5.com 满分网,求四棱锥P-ABCD的体积.

manfen5.com 满分网 查看答案
数列{an}的首项a1=1,前n项和为Sn,满足关系3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4…).
(I)设数列{an}的公比为f(t),作数列{bn},使b1=1,manfen5.com 满分网(n=2,3,4…).求bn
(II)求Tn=(b1b2-b2b3)+(b3b4-b4b5)+…+(b2n-1b2n-b2nb2n+1)的值.
查看答案
已知f(x)=manfen5.com 满分网
(I)求f(x)的周期,并求x∈(0,π)时的单调增区间;
(II)在△ABC中,a、b、分别是角A,B,C所对的边,若manfen5.com 满分网,且manfen5.com 满分网,求manfen5.com 满分网的最大值.
查看答案
已知椭圆manfen5.com 满分网=1(a>b>0)的离心率是manfen5.com 满分网,过椭圆上一点M作直线MA,MB交椭圆于A,B两点,且斜率分别为k1,k2,若点A,B关于原点对称,则k1•k2的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.