已知函数
(a>0,a≠1),
(1)若a>1,且关于x的方程f(x)=m有两个不同的正数解,求实数m的取值范围;
(2)设函数g(x)=f(-x),x∈[-2,+∞),g(x)满足如下性质:若存在最大(小)值,则最大(小)值与a无关.试求a的取值范围.
考点分析:
相关试题推荐
以F
1(0,-1),F
2(0,1)为焦点的椭圆C过点
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点
的动直线l交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得无论l如何转动,以AB为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,请说明理由.
查看答案
如图已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E,F分别为棱BC,AD的中点.
(1)若PD=1,求异面直线PB和DE所成角的大小.
(2)若二面角P-BF-C的余弦值为
,求四棱锥P-ABCD的体积.
查看答案
数列{a
n}的首项a
1=1,前n项和为S
n,满足关系3tS
n-(2t+3)S
n-1=3t(t>0,n=2,3,4…).
(I)设数列{a
n}的公比为f(t),作数列{b
n},使b
1=1,
(n=2,3,4…).求b
n;
(II)求T
n=(b
1b
2-b
2b
3)+(b
3b
4-b
4b
5)+…+(b
2n-1b
2n-b
2nb
2n+1)的值.
查看答案
已知f(x)=
.
(I)求f(x)的周期,并求x∈(0,π)时的单调增区间;
(II)在△ABC中,a、b、分别是角A,B,C所对的边,若
,且
,求
的最大值.
查看答案
已知椭圆
=1(a>b>0)的离心率是
,过椭圆上一点M作直线MA,MB交椭圆于A,B两点,且斜率分别为k
1,k
2,若点A,B关于原点对称,则k
1•k
2的值为
.
查看答案