设母线与底面的夹角2α,底面半径R,内切球半径r=1,圆锥的高h用α表示R,h,求出圆锥的体积V的表达式,利用基本不等式求出V最小.
【解析】
设母线与底面的夹角2α,底面半径R,内切球半径r=1,圆锥的高h 则:R=r•cotα=cotα,h=R•tan2α=cotα•tan2α=,
圆锥的体积V==
=,
而2α<90°,α<45°,所以:tanα<1,1-tan2α>0 又因为:tan2α+(1-tan2α)=1=定值
所以:当tan2α=1-tan2α,即tanα=时,V最小==.
故选B.