在平面直角坐标系xOy中,已知圆心在第二象限,半径为2
的圆C与直线y=x相切于坐标原点O.椭圆
=1与圆C的一个交点到椭圆两点的距离之和为10.
(1)求圆C的方程;
(2)试探求C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
如图所示,某市政府决定在以政府大楼O为中心,正北方向和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正面要朝市政府大楼.设扇形的半径OM=R,∠MOP=45°,OB与OM之间的夹角为θ.
(I)将图书馆底面矩形ABCD的面积S表示成θ的函数.
(II)若R=45m,求当θ为何值时,矩形ABCD的面积S有最大值?其最大值是多少?(精确到0.01m
2)
查看答案
已知二次函数f(x)满足条件f(0)=0,f(-x+5)=f(x-3),且方程f(x)=x有等根.
(Ⅰ)求f(x)的解析式;
(Ⅱ)是否存在实数m,n,使f(x)的定义域和值域分别为[m,n]和[3m,3n]?如果存在,求出m,n的值;如果不存在,说明理由.
查看答案
如图,在正三棱柱ABC-A
1B
1C
1中,点D在边BC上,AD⊥C
1D.
(Ⅰ)求证:AD⊥平面BC C
1B
1;
(Ⅱ)设E是B
1C
1上的一点,当
的值为多少时,A
1E∥平面ADC
1?请给出证明.
查看答案
在△ABC中,a,b,c分别是角A,B,C的对边,
,tanB=3.
(Ⅰ)求角C的值;
(Ⅱ)若a=4,求△ABC面积.
查看答案
若函数f(x)=x
3-ax
2(a>0)在区间
上是单调递增函数,则使方程f(x)=1000有整数解的实数a的个数是
.
查看答案