满分5 > 高中数学试题 >

命题“∃x∈R,使x2+ax-4a<0为假命题”是“-16≤a≤0”的( ) A...

命题“∃x∈R,使x2+ax-4a<0为假命题”是“-16≤a≤0”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
命题“∃x∈R,使x2+ax-4a<0为假命题”,等价于命题“∀x∈R,使x2+ax-4a≥0为真命题”,故△=a2+16a≤0,由此得到-16≤a≤0;由-16≤a≤0,知△=a2+16a≤0,故命题“∀x∈R,使x2+ax-4a≥0为真命题”,所以命题“∃x∈R,使x2+ax-4a<0为假命题”.由此得到命题“∃x∈R,使x2+ax-4a<0为假命题”是“-16≤a≤0”的充要条件. 【解析】 ∵命题“∃x∈R,使x2+ax-4a<0为假命题”, ∴命题“∀x∈R,使x2+ax-4a≥0为真命题”, ∴△=a2+16a≤0, ∴-16≤a≤0, 即命题“∃x∈R,使x2+ax-4a<0为假命题”⇒“-16≤a≤0”; ∵-16≤a≤0, ∴△=a2+16a≤0, ∴命题“∀x∈R,使x2+ax-4a≥0为真命题”, ∴命题“∃x∈R,使x2+ax-4a<0为假命题”, 即命题“∃x∈R,使x2+ax-4a<0为假命题”⇒“-16≤a≤0”. 故命题“∃x∈R,使x2+ax-4a<0为假命题”是“-16≤a≤0”的充要条件. 故选C.
复制答案
考点分析:
相关试题推荐
已知点M是直线l:2x-y-4=0与x轴的交点,过M点作直线l的垂线,得到的垂线的直线方程是( )
A.x-2y-2=0
B.x-2y+2=0
C.x+2y-2=0
D.x+2y+2=0
查看答案
若a>0,b>0,且a+2b-2=0,则ab的最大值为( )
A.manfen5.com 满分网
B.1
C.2
D.4
查看答案
集合A={x|x2=1},B={x|ax=1}.若B⊆A,则实数a的值为( )
A.1
B.-1
C.±1
D.0或±1
查看答案
已知函数f(x)=(x2-3x+3)•ex定义域为[-2,t](t>-2),设f(-2)=m,f(t)=n.
(Ⅰ)试确定t的取值范围,使得函数f(x)在[-2,t]上为单调函数;
(Ⅱ)求证:n>m;
(Ⅲ)求证:对于任意的t>-2,总存x∈(-2,t),满足manfen5.com 满分网,并确定这样的x的个数.
查看答案
在平面直角坐标系xOy中,已知圆心在第二象限,半径为2manfen5.com 满分网的圆C与直线y=x相切于坐标原点O.椭圆manfen5.com 满分网=1与圆C的一个交点到椭圆两点的距离之和为10.
(1)求圆C的方程;
(2)试探求C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.