满分5 > 高中数学试题 >

已知函数y=f(x)=. (1)求函数y=f(x)的图象在x=处的切线方程; (...

已知函数y=f(x)=manfen5.com 满分网
(1)求函数y=f(x)的图象在x=manfen5.com 满分网处的切线方程;
(2)求y=f(x)的最大值;
(3)设实数a>0,求函数F(x)=af(x)在[a,2a]上的最小值.
(1)利用导数的几何意义:导数在切点处的导数值是曲线的切线的斜率,求出切线方程. (2)令导函数为0求出根,判断根左右两边的导函数符号,判断出函数的单调性,求出函数的最值. (3)利用(2)的结论,判断出函数的最大值在e处取得;最小值在端点处取得;通过对a的分类讨论比较出两个端点值的大小,求出最小值. 【解析】 (1)∵f(x)定义域为(0,+∞),∴f′(x)= ∵f()=-e,又∵k=f′()=2e2, ∴函数y=f(x)的在x=处的切线方程为: y+e=2e2(x-),即y=2e2x-3e. (2)令f′(x)=0得x=e. ∵当x∈(0,e)时,f′(x)>0,f(x)在(0,e)上为增函数, 当x∈(e,+∞)时,f′(x)<0,则在(e,+∞)上为减函数, ∴fmax(x)=f(e)=. (3)∵a>0,由(2)知: F(x)在(0,e)上单调递增,在(e,+∞)上单调递减. ∴F(x)在[a,2a]上的最小值f(x)min=min{F(a),F(2a)}, ∵F(a)-F(2a)=ln, ∴当0<a≤2时,F(a)-F(2a)≤0,fmin(x)=F(a)=lna. 当a>2时,F(a)-F(2a)>0,f(x)min=f(2a)=ln2a.
复制答案
考点分析:
相关试题推荐
已知{an}是公比大于1的等比数列,a1,a3是函数f(x)=x+manfen5.com 满分网-10的两个零点.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=log3an+n+2,且b1+b2+b3+…+bn≥80,求n的最小值.
查看答案
manfen5.com 满分网在每年的春节后,某市政府都会发动公务员参与到植树绿化活动中去.林业管理部门在植树前,为了保证树苗的质量,都会在植树前对树苗进行检测.现从甲、乙两种树苗中各抽测了10株树苗,量出它们的高度如下(单位:厘米):
甲:37,21,31,20,29,19,32,23,25,33;
乙:10,30,47,27,46,14,26,10,44,46.
(1)画出两组数据的茎叶图,并根据茎叶图对甲、乙两种树苗的高度作比较,写出两个统计结论;
(2)设抽测的10株甲种树苗高度平均值为manfen5.com 满分网,将这10株树苗的高度依次输入,按程序框(如图)进行运算,问输出的S大小为多少?并说明S的统计学意义.
查看答案
在△ABC中,manfen5.com 满分网manfen5.com 满分网
(Ⅰ)求角A;           
(Ⅱ)设△ABC的面积为S,且manfen5.com 满分网,求边AC的长.
查看答案
在棱长为1的正方体ABCD-A1B1C1D1中,过对角线BD1的一个平面交AA1于E,交CC1于F,得四边形BFD1E,给出下列结论:
①四边形BFD1E有可能为梯形
②四边形BFD1E有可能为菱形
③四边形BFD1E在底面ABCD内的投影一定是正方形
④四边形BFD1E有可能垂直于平面BB1D1D
⑤四边形BFD1E面积的最小值为manfen5.com 满分网
其中正确的是    (请写出所有正确结论的序号) 查看答案
已知函数manfen5.com 满分网则f(2+log23)的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.