满分5 > 高中数学试题 >

已知直线与曲线相切. (1)求b的值 (2)若方程f(x)=x2+m在(0,+∞...

已知直线manfen5.com 满分网与曲线manfen5.com 满分网相切.
(1)求b的值
(2)若方程f(x)=x2+m在(0,+∞)上有两个解x1,x2
求:①m的取值范围     ②比较x1x2+9与3(x1+x2)的大小.
(1)先求出导函数f'(x),设出切点(x,y),然后根据在x=x的导数等于切线的斜率,切点在切线和函数f(x)的图象上,建立方程组,解之即可求出b的值; (2)①构造函数 ,利用导数研究函数h(x)的单调性,转化成使h(x)图象在(0,+∞)内与x轴有两个不同的交点,建立关系式,解之即可求出m的范围.②做差比较较x1x2+9与3(x1+x2)的大小. 【解析】 (1)∵,∴f'(x)=x2-b 设切点为(x,y),依题意得 解得:b=3 (2)设 则h'(x)=x2-2x-3=(x+1)(x-3). 1令h'(x)=023,得x=-14或x=35在(0,3)6上,h'(x)<07, 故h(x)在(0,3)上单调递减,在(3,+∞)上,h'(x)>0, 故h(x)在(3,+∞)上单调递增, 若使h(x)图象在(0,+∞)内与x轴有两个不同的交点, 则需,∴-9<m<0 此时存在x>3时,h(x)>0,例如当x=5时,. ∴①所求m的范围是:-9<m<0. ②由①知,方程f(x)=x2+m2在(0,+∞)3上有两个解x1,x2, 满足0<x1<3,x2>3,x1x2+9-3(x1+x2)=(3-x1)(3-x2)<0, x1x2+9<3(x1+x2).
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x4-2ax2,a∈R.
(1)当a≤0时,求函数f(x)的单调区间;
(2)当a<x<2a时,函数f(x)存在极小值,求a的取值范围.
查看答案
已知等差数列{an}的前n项和为Sn,公差d≠0,且S3+S5=50,a1,a4,a13成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设manfen5.com 满分网是首项为1,公比为3的等比数列,求数列{bn}的前n项和Tn
查看答案
某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现在采用分层抽样法(层内采用不放回的简单随机抽样)从甲,乙两组中共抽取3人进行技术考核.
(1)求甲,乙两组各抽取的人数;
(2)求从甲组抽取的工人中恰有1名女工的概率;
(3)令X表示抽取的3名工人中男工人的人数,求X的分布列及数学期望、
查看答案
设△ABC的三个内角A、B、C的对边分别为a、b、c,若B=60°,且manfen5.com 满分网manfen5.com 满分网=4,
(1)求△ABC的面积;
(2)若b=2manfen5.com 满分网,求a、c.
查看答案
设函数f(x)的定义域为D,如果对于任意的x1∈D,存在唯一的x2∈D,使manfen5.com 满分网(C为常数)成立,则称函数f(x)在D上均值为C.下列五个函数:①y=4sinx;②y=x3;③y=lgx;④y=2x;⑤y=2x-1.则满足在其定义域上均值为2的所有函数的序号是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.