满分5 > 高中数学试题 >

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,-<φ<)一个周期的图象...

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,-manfen5.com 满分网<φ<manfen5.com 满分网)一个周期的图象如图所示.
(1)求函数f(x)的表达式;
(2)若f(α)+f(α-manfen5.com 满分网)=manfen5.com 满分网,且α为△ABC的一个内角,求sinα+cosα的值.

manfen5.com 满分网
(1)根据函数的图象,求出A、T,求出ω,函数x=-时,y=0,结合-<φ<求出φ,然后求函数f(x)的表达式; (2)利用f(α)+f(α-)=,化简出(sinα+cosα)2,2sinαcosα=>0且α为△ABC的一个内角,确定sinα>0,cosα>0,求sinα+cosα的值. 【解析】 (1)从图知,函数的最大值为1,则A=1. 函数f(x)的周期为T=4×(+)=π. 而T=,则ω=2.又x=-时,y=0, ∴sin[2×(-)+φ]=0. 而-<φ<,则φ=, ∴函数f(x)的表达式为f(x)=sin(2x+). (2)由f(α)+f(α-)=,得 sin(2α+)+sin(2α-)=, 即2sin2αcos=,∴2sinαcosα=. ∴(sinα+cosα)2=1+=. ∵2sinαcosα=>0,α为△ABC的内角, ∴sinα>0,cosα>0,即sinα+cosα>0.∴sinα+cosα=.
复制答案
考点分析:
相关试题推荐
设函数f(x)=cosωx(sinωx+cosωx),其中0<ω<2.
(1)若f(x)的周期为π,求当-manfen5.com 满分网≤x≤manfen5.com 满分网时,f(x)的值域
(2)若函数f(x )的图象的一条对称轴为x=manfen5.com 满分网,求ω的值.
查看答案
manfen5.com 满分网的值为     查看答案
已知α为锐角,且tanα=manfen5.com 满分网.求manfen5.com 满分网的值.
查看答案
已知A、B、C是△ABC的三个内角,若sinA-3cosA=0,sin2B-sinBcosB-2cos2B=0,则角C的大小为     查看答案
manfen5.com 满分网是函数f(x)=sin2x+acos2x(a∈R,为常数)的零点,则f(x)的最小正周期是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.