已知函数f(x)=alnx+
-(1+a)x(a∈R).
(1)当0<a<1时,求函数f(x)的单调区间;
(2)已知命题P:f(x)≥0对定义域内的任意x恒成立,若命题P成立的充要条件是{a|a≤t},求实数t的值.
考点分析:
相关试题推荐
已知各项均为正数的等比数列{a
n}的前n项和为S
n,a
1=3,S
3=39.
(1)求数列{a
n}通项公式;
(2)若在a
n与a
n+1之间插入n个数,使得这n+2个数组成一个公差为d
n的等差数列,求证:
…
.
查看答案
今年夏季酷暑难熬,某品牌饮料抓住这一时机举行夏季促销活动,若瓶盖中印有“中奖2元”字样,则可以兑换2元现金,如果这种饮料每瓶成本为2元,投入市场按每瓶3元销售,“中奖2元”综合中奖率为10%.
(1)求甲够买饮料3瓶,至少有2瓶中奖的概率;
(2)若该厂生产这种饮料20万瓶,假设全部售出,则盈利的期望值是多少?
查看答案
已知轴对称平面五边形ADCEF(如图1),BC为对称轴,ADCD,AD=AB=1,CD=BC=
,将此图形沿BC折叠成直二面角,连接AF、DE得到几何体(如
图2)
(1)证明:AF∥平面DEC;
(2)求二面角E-AD-B的正切值.
查看答案
已知△ABC的三个内角A、B、C的对边分别为a,b,c,满足a+c=2b,且2cos2B=8cosB-5,
(1)求角B的大小;
(2)若a=2,求△ABC的面积.
查看答案
对于函数f(x)=-2cosx,x∈[0,π]与函数g(x)=
有下列命题:
①无论函数f(x)的图象通过怎样的平移所得的图象对应的函数都不会是奇函数;
②函数f(x)的图象与两坐标轴及其直线x=π所围成的封闭图形的面积为4;
③方程g(x)=0有两个根;
④函数g(x)图象上存在一点处的切线斜率小于0;
⑤若函数f(x)在点P处的切线平行于函数g(x)在点Q处的切线,则直线PQ的斜率为
,其中正确的命题是
.(把所有正确命题的序号都填上)
查看答案