满分5 > 高中数学试题 >

设F1、F2分别是椭圆的左、右焦点. (Ⅰ)若P是该椭圆上的一个动点,求PF1•...

设F1、F2分别是椭圆manfen5.com 满分网的左、右焦点.
(Ⅰ)若P是该椭圆上的一个动点,求PF1•PF2的最大值和最小值;
(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.
(Ⅰ)根据题意,求出a,b,c的值,然后设P的坐标,根据PF1•PF2的表达式,按照一元二次函数求最值方法求解. (Ⅱ)设出直线方程,与已知椭圆联立方程组,运用设而不求韦达定理求出根的关系,求出k的取值范围. 【解析】 (Ⅰ)由题意易知 所以, 设P(x,y), 则= 因为x∈[-2,2], 故当x=0,即点P为椭圆短轴端点时, 有最小值-2 当x=±2,即点P为椭圆长轴端点时, 有最大值1 (Ⅱ)显然直线x=0不满足题设条件, 可设直线l:y=kx+2,A(x1,y1),B(x2,y2), 联立,消去y,整理得: ∴ 由得:或, 又 ∴ 又y1y2=(kx1+2)(kx2+2) =k2x1x2+2k(x1+x2)+4 == ∵, 即k2<4∴-2<k<2 故由①、②得: 或.
复制答案
考点分析:
相关试题推荐
设定函数manfen5.com 满分网,且方程f′(x)-9x=0的两个根分别为1,4.
(Ⅰ)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;
(Ⅱ)若f(x)在(-∞,+∞)无极值点,求a的取值范围.
查看答案
如图1,等腰梯形ABCD中,AD∥BC,AB=AD,∠ABC=60°,E是BC的中点.将△ABE沿AE折起后如图2,使二面角B-AE-C成直二面角,设F是CD的中点,P是棱BC的中点.
(1)求证:AE⊥BD;
(2)求证:平面PEF⊥平面AECD;
(3)判断DE能否垂直于平面ABC,并说明理由.

manfen5.com 满分网 查看答案
已知数列 {an}的前n项和Sn=2n2-3n
(1)证明数列{an}是等差数列.
(2)若bn=an•2n,求数列{bn}的前n项和Tn
查看答案
袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球
(Ⅰ)试问:一共有多少种不同的结果?请列出所有可能的结果;
(Ⅱ)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率.
查看答案
已知向量:manfen5.com 满分网=(cosωx-sinωx,2sinωx),(其中ω>0),函数f(x)=manfen5.com 满分网,若f(x)相邻两对称轴间的距离为manfen5.com 满分网
(1)求ω的值,并求f(x)的最大值及相应x的集合;
(2)在△ABC中,a,b,c分别是A,B,C所对的边,△ABC的面积S=5manfen5.com 满分网,b=4,f(A)=1,求边a的长.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.