满分5 > 高中数学试题 >

已知函数f(x)=ax3+bx2的图象经过点M(1,4),曲线在点M处的切线恰好...

已知函数f(x)=ax3+bx2的图象经过点M(1,4),曲线在点M处的切线恰好与直线x+9y=0垂直.
(1)求实数a,b的值;
(2)若函数f(x)在区间[m,m+1]上单调递增,求m的取值范围.
(1)将M的坐标代入f(x)的解析式,得到关于a,b的一个等式;求出导函数,求出f′(1)即切线的斜率,利用垂直的两直线的斜率之积为-1,列出关于a,b的另一个等式,解方程组,求出a,b的值. (2)求出 f′(x),令f′(x)>0,求出函数的单调递增区间,据题意知[m,m+1]⊆(-∝,-2]∪[0,+∝),列出端点的大小,求出m的范围. 【解析】 (1)∵f(x)=ax3+bx2的图象经过点M(1,4),∴a+b①式 …(1分) f'(x)=3ax2+2bx,则f'(1)=3a+2b…(3分) 由条件②式…(5分) 由①②式解得a=1,b=3 (2)f(x)=x3+3x2,f'(x)=3x2+6x, 令f'(x)=3x2+6x≥0得x≥0或x≤-2,…(8分) ∵函数f(x)在区间[m,m+1]上单调递增 ∴[m,m+1]⊆(-∝,-2]∪[0,+∝) ∴m≥0或m+1≤-2 ∴m≥0或m≤-3
复制答案
考点分析:
相关试题推荐
设椭圆M:manfen5.com 满分网(a>b>0)的离心率与双曲线x2-y2=1的离心率互为倒数,且内切于圆x2+y2=4.
(1)求椭圆M的方程;
(2)若直线y=manfen5.com 满分网x+m交椭圆于A、B两点,椭圆上一点manfen5.com 满分网,求△PAB面积的最大值.
查看答案
如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,AB=2DC=manfen5.com 满分网
(I)设M是PC上的一点,证明:平面MBD⊥平面PAD;
(Ⅱ)求三棱锥C-PAB的体积.

manfen5.com 满分网 查看答案
袋中装有号码分别为1,2,3,4,5,6的六个小球,设号码为n的球的重量为n2-6n+12克,这些球等可能地从袋里取出(不受重量、号码的影响).
(1)如果任意取出1球,求其重量大于号码数的概率;
(2)如果不放回地任意取出2球,求它们重量相等的概率.
查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足S=manfen5.com 满分网(a2+b2-c2).
(Ⅰ)求角C的大小;
(Ⅱ)求sinA+sinB的取值范围.
查看答案
已知函数manfen5.com 满分网,若f(x)在(0,+∞)上单调递减,则实数的取值范围为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.