满分5 > 高中数学试题 >

已知PA⊥矩形ABCD所在平面,PA=AD=,E为线段PD上一点,G为线段PC的...

已知PA⊥矩形ABCD所在平面,PA=AD=manfen5.com 满分网,E为线段PD上一点,G为线段PC的中点.
(1)当E为PD的中点时,求证:BD⊥CE;
(2)当manfen5.com 满分网时,求证:BG∥平面AEC.

manfen5.com 满分网
(1)利用线面垂直,证明线线垂直,即证明BD⊥平面CEH; (2)利用面面平行,证明线面平行,即证明平面BGF∥平面AEC,而证明面面平行,又是通过证明线面平行得到. 证明:(1)过E作EH⊥AD,垂足为H,连接CH. ,, ∴∠1=∠2 又∠2+∠3=90°,∴∠1+∠3=90°,∴BD⊥CH, ∵PA⊥矩形ABCD所在平面,∴平面PAD⊥矩形ABCD所在平面 ∵EH⊥AD,平面PAD∩矩形ABCD=AD ∴EH⊥矩形ABCD所在平面 ∴EH⊥BD ∵EH∩CH=H ∴BD⊥平面CEH ∵CE⊂平面CEH ∴BD⊥CE.     (6分) (2)取PE的中点F,连接GF,BF. ∵G为PC的中点, ∴GF∥CE ∵GF⊄平面ACE,CE⊂平面ACE ∴GF∥平面ACE. 连接BD交AC与点O,连接OE. ∵E为DF的中点, ∴BF∥OE ∴BF∥平面ACE.∵BF∩GF=F, ∴平面BGF∥平面AEC. 又BG⊂平面BGF ∴BG∥平面AEC.  (12分)
复制答案
考点分析:
相关试题推荐
已知manfen5.com 满分网
(1)求f(x)的最小值及此时x的取值集合;
(2)把f(x)的图象向右平移m(m>0)个单位后所得图象关于y轴对称,求m的最小值.
查看答案
已知函数f(x)=x|x-a|-2,当x∈[1,2]时,f(x)<0恒成立,则实数a的取值范围是    查看答案
过抛物线y=8x2的焦点作直线交抛物线于A,B两点,线段AB的中点M的纵坐标为2,则线段AB的长为    查看答案
设f(x)是定义在R上的函数,对一切x∈R均有f(x)+f(x+2)=0,当x∈(-1,1]时,f(x)=2x+1,则当x∈(3,5]时,f(x)=    查看答案
已知数列{an}满足manfen5.com 满分网,则a2011=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.