满分5 > 高中数学试题 >

设函数f(x)=xlnx(x>0). (1)求函数f(x)的最小值; (2)设F...

设函数f(x)=xlnx(x>0).
(1)求函数f(x)的最小值;
(2)设F(x)=ax2+f′(x)(a∈R),讨论函数F(x)的单调性;
(3)斜率为k的直线与曲线y=f′(x)交于A(x1,y1)、B(x2,y2)(x1<x2)两点,求证:manfen5.com 满分网
(1)根据极值与最值的求解方法,连续函数在区间(a,b)内只有一个极值,那么极小值就是最小值; (2)先确定函数的定义域然后求导数Fˊ(x),讨论a在函数的定义域内解不等式Fˊ(x)>0和Fˊ(x)<0即可求得; (3)要证,即证,等价于证,令, 则只要证,由t>1知lnt>0,故等价于证lnt<t-1<tlnt(t>1)即可. (1)【解析】 f'(x)=lnx+1(x>0),令f'(x)=0,得.(2分) ∵当时,f'(x)<0;当时,f'(x)>0,(3分) ∴当时,.(4分) (2)F(x)=ax2+lnx+1(x>0),.(5分) ①当a≥0时,恒有F'(x)>0,F(x)在(0,+∞)上是增函数;(6分) ②当a<0时, 令F'(x)>0,得2ax2+1>0,解得;(7分) 令F'(x)<0,得2ax2+1<0,解得.(8分) 综上,当a≥0时,F(x)在(0,+∞)上是增函数; 当a<0时,F(x)在上单调递增,在上单调递减.(9分) (3)证:. 要证,即证,等价于证,令, 则只要证,由t>1知lnt>0,故等价于证lnt<t-1<tlnt(t>1)(*). ①设g(t)=t-1-lnt(t≥1),则,故g(t)在[1,+∞)上是增函数, ∴当t>1时,g(t)=t-1-lnt>g(1)=0,即t-1>lnt(t>1). ②设h(t)=tlnt-(t-1)(t≥1),则h'(t)=lnt≥0(t≥1),故h(t)在[1,+∞)上是增函数, ∴当t>1时,h(t)=tlnt-(t-1)>h(1)=0,即t-1<tlnt(t>1). 由①②知(*)成立,得证.(14分)
复制答案
考点分析:
相关试题推荐
已知圆C1的方程为x2+(y-2)2=1,定直线l的方程为y=-1.动圆C与圆C1外切,且与直线l相切.
(Ⅰ)求动圆圆心C的轨迹M的方程;
(Ⅱ)斜率为k的直线m与轨迹M相切于第一象限的点P,过点P作直线m的垂线恰好经过点A(0,6),并交轨迹M与另一点Q,记S为轨迹M与直线PQ围成的封闭图形的面积,求S的值.
查看答案
如图,AA1、BB1为圆柱OO1的母线,BC是底面圆O的直径,D、E分别是AA1、CB1的中点,DE⊥面CBB1
(Ⅰ)证明:DE∥面ABC;
(Ⅱ)若BB1=BC,求CA1与面BB1C所成角的正弦值.

manfen5.com 满分网 查看答案
第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者.将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”.
(1)如果用分层抽样的方法从“高个子”和“非高个子”中中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?
(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪小姐”的人数,试写出ξ的分布列,并求ξ的数学期望.

manfen5.com 满分网 查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=3acosB-ccosB.
(I)求cosB的值;
(II)若manfen5.com 满分网,且manfen5.com 满分网,求a和c的值.
查看答案
数列{an}的前n项和为Sn,若数列{an}的各项按如下规律排列:manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网…,manfen5.com 满分网manfen5.com 满分网,…,manfen5.com 满分网,…有如下运算和结论:
①a24=manfen5.com 满分网
②数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比数列;
③数列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n项和为Tn=manfen5.com 满分网
④若存在正整数k,使Sk<10,Sk+1≥10,则ak=manfen5.com 满分网
其中正确的结论是    .(将你认为正确的结论序号都填上) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.